【題目】已知如圖,長(zhǎng)方體中,,點(diǎn),,分別為, 的中點(diǎn),過點(diǎn)的平面與平面平行,且與長(zhǎng)方體的面相交,交線圍成一個(gè)幾何圖形.

(1)在圖中畫出這個(gè)幾何圖形,并求這個(gè)幾何圖形的面積(畫圖說出作法,不用說明理由);

(2)求證:平面.

【答案】(1) .(2)見解析.

【解析】

1)以公理三及其推理,以及面面平行判定定理為依據(jù),即可作出過點(diǎn)且與平面平行的平面,由于其截面為等腰梯形,對(duì)應(yīng)運(yùn)用梯形面積公式即可求出該梯形面積.

2)設(shè)EFQ,連接DQ,關(guān)鍵通過證明以及,即可利用線面垂直判定定理證明.而對(duì)于的證明,可以通過平面即可,而的證明,需要證得即可.

1)設(shè)N的中點(diǎn),連結(jié)MNAN、AC、CM

則四邊形MNAC為所作圖形;

易知MN(或),四邊形為梯形,

MMPAC于點(diǎn)P,可得,

,得

所以梯形的面積=;

2)證法1:在長(zhǎng)方體中,設(shè)EFQ,連接DQ,則QEF的中點(diǎn)并且為的四等點(diǎn),如圖,

,又,

平面,,

,則

,

,

平面

證法2:設(shè)EFQ,連接DQ,則QEF的中點(diǎn),且為的四等分點(diǎn),

可知,

,,

平面,

,

,

,

,又,

平面

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個(gè)平面垂直,下列命題

①一個(gè)平面內(nèi)已知直線必垂直于另一個(gè)平面內(nèi)的任意一條直線

②一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面的無數(shù)條直線

③一個(gè)平面內(nèi)的任一條直線必垂直于另一個(gè)平面

④過一個(gè)平面內(nèi)任意一點(diǎn)作交線的垂線,則此垂線必垂直于另一個(gè)平面

其中不正確命題的個(gè)數(shù)是(

A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)是橢圓上任意一點(diǎn),的最小值為,且該橢圓的離心率為.

1)求橢圓的方程;

2)若是橢圓上不同的兩點(diǎn),且,若,試問直線是否經(jīng)過一個(gè)定點(diǎn)?若經(jīng)過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不經(jīng)過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若,,求函數(shù)的極值;

(2)若是函數(shù)的一個(gè)極值點(diǎn),試求出關(guān)于的關(guān)系式(即用表示),并確定的單調(diào)區(qū)間;(提示:應(yīng)注意對(duì)的取值范圍進(jìn)行討論)

(3)在(2)的條件下,設(shè),函數(shù),若存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問50名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表,由

參照附表,得到的正確結(jié)論是

  

A. 99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

B. 99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”

C. 在犯錯(cuò)誤的概率不超過01%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

D. 在犯錯(cuò)誤的概率不超過01%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐為矩形,,,平面平面

1)證明:平面平面;

2)若中點(diǎn),直線與平面所成的角為,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與雙曲線有相同的焦點(diǎn),點(diǎn)是曲線的一個(gè)公共點(diǎn),,分別是的離心率,若,則的最小值為( )

A. B. 4 C. D. 9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為Tn,a1=﹣1,b1=1,a2+b2=2.

(1)若a3+b3=5,求{bn}的通項(xiàng)公式;

(2)若T3=21,求S3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是離心率為的橢圓的左、右焦點(diǎn),過軸的垂線交橢圓所得弦長(zhǎng)為,設(shè)、是橢圓上的兩個(gè)動(dòng)點(diǎn),線段的中垂線與橢圓交于、兩點(diǎn),線段的中點(diǎn)的橫坐標(biāo)為1.

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案