1.在△ABC中,若$\overrightarrow{AB}$$+\overrightarrow{AC}$=4$\overrightarrow{AP}$,則$\overrightarrow{PB}$=( 。
A.$\frac{3}{4}$$\overrightarrow{AB}$$-\frac{1}{4}$$\overrightarrow{AC}$B.-$\frac{3}{4}$$\overrightarrow{AB}$$+\frac{1}{4}$$\overrightarrow{AC}$C.-$\frac{1}{4}$$\overrightarrow{AB}$$+\frac{3}{4}$$\overrightarrow{AC}$D.$\frac{1}{4}$$\overrightarrow{AB}$$-\frac{3}{4}$$\overrightarrow{AC}$

分析 如圖所示,以AB,AC為鄰邊作平行四邊形ABEC,設(shè)D為BC的中點,$\overrightarrow{AB}$$+\overrightarrow{AC}$=4$\overrightarrow{AP}$,可得$\overrightarrow{AB}$$+\overrightarrow{AC}$=$\overrightarrow{AE}$=2$\overrightarrow{AD}$=4$\overrightarrow{AP}$,$\overrightarrow{AD}$=2$\overrightarrow{AP}$,即點P為AD的中點.再利用向量三角形法則與平行四邊形法則即可得出.

解答 解:如圖所示,以AB,AC為鄰邊作平行四邊形ABEC,設(shè)D為BC的中點,
∵$\overrightarrow{AB}$$+\overrightarrow{AC}$=4$\overrightarrow{AP}$,
∴$\overrightarrow{AB}$$+\overrightarrow{AC}$=$\overrightarrow{AE}$=2$\overrightarrow{AD}$=4$\overrightarrow{AP}$,
∴$\overrightarrow{AD}$=2$\overrightarrow{AP}$,即點P為AD的中點.
則$\overrightarrow{PB}$=-$\frac{1}{2}(\overrightarrow{BA}+\overrightarrow{BD})$=-$\frac{1}{2}$$\overrightarrow{BA}$-$\frac{1}{4}$$\overrightarrow{BC}$=-$\frac{1}{2}$$\overrightarrow{BA}$-$\frac{1}{4}$×$(\overrightarrow{BA}+\overrightarrow{AC})$=$\frac{3}{4}$$\overrightarrow{AB}$-$\frac{1}{4}$$\overrightarrow{AC}$.
故選:A.

點評 本題考查了向量三角形法則與平行四邊形法則、向量共線定理,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)隨機變量ξ~N(l,25),若P(ξ≤0)=P(ξ≥a-2),則a=(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.?dāng)?shù)列{an}的前n項和為Sn,且滿足${a_n}+{a_{n+1}}=\frac{1}{2}$(n∈N*),a2=2,則S21=$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.《九章算術(shù)》中“開立圓術(shù)”曰:“置積尺數(shù),以十六乘之,九而一,所得開立方除之,即立圓徑”.“開立圓術(shù)”相當(dāng)于給出了已知球的體積V,求其直徑d,公式為$d=\root{3}{{\frac{16}{9}V}}$.如果球的半徑為$\frac{1}{3}$,根據(jù)“開立圓術(shù)”的方法求球的體積為( 。
A.$\frac{4π}{81}$B.$\frac{π}{6}$C.$\frac{4}{81}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè) a∈R,若(1+i)(a-i)=-2i,則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合M={1,9,a},集合P={1,a2},若P⊆M,則實數(shù)a的取值個數(shù)為( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在三角形ABC中,∠B=$\frac{π}{3}$,AB=1,BC=2,點D在邊AC上,且$\overrightarrow{AD}$=λ$\overrightarrow{AC}$,λ∈R,若$\overrightarrow{BD}$•$\overrightarrow{BC}$=2,則λ=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合A={x|1<x<2},B={x|ax-2<0},若A?B,求滿足條件的實數(shù)a組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.計算-i2的值為( 。
A.1B.-1C.3D.0

查看答案和解析>>

同步練習(xí)冊答案