7.計算-i2的值為( 。
A.1B.-1C.3D.0

分析 利用i2=-1即可得出.

解答 解:-i2=-(-1)=1.
故選:A.

點評 本題考查了復(fù)數(shù)的運算法則及其性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,若$\overrightarrow{AB}$$+\overrightarrow{AC}$=4$\overrightarrow{AP}$,則$\overrightarrow{PB}$=( 。
A.$\frac{3}{4}$$\overrightarrow{AB}$$-\frac{1}{4}$$\overrightarrow{AC}$B.-$\frac{3}{4}$$\overrightarrow{AB}$$+\frac{1}{4}$$\overrightarrow{AC}$C.-$\frac{1}{4}$$\overrightarrow{AB}$$+\frac{3}{4}$$\overrightarrow{AC}$D.$\frac{1}{4}$$\overrightarrow{AB}$$-\frac{3}{4}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)y=$\frac{x}{x+a}$在(-2,+∞)上為增函數(shù),則a的取值范圍是( 。
A.a<2B.a≥2C.a≤2D.a>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={-1,0,1,2,3},B={x|x2-2x-3<0},則 A∩B=(  )
A.{-1,0,1,2}B.{0,1,2}C.{0,1,2,3}D.{-1,0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知x,y滿足$\left\{\begin{array}{l}{x-y≥0}\\{x+y-4≥0}\\{x≤4}\end{array}\right.$,則z=4x+y的最小值為( 。
A.6B.8C.10D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,在邊長為1的正方體ABCD-A1B1C1D1中,
(1)判斷△BC1D的形狀;
(2)求二面角A1-BD-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中tanA+tanB=1-tanAtanB則∠A+∠B等于( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x<2}\\{4-\sqrt{x-1},x≥2}\end{array}\right.$,則f($\frac{1}{f(10)}$)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=alnx+$\frac{2{a}^{2}}{x}$+x.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)≥0,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案