8.函數(shù)f(x)=1+2sinx的最大值為3.

分析 利用正弦函數(shù)的有界性解答即可.

解答 解:因?yàn)閟inx∈[-1,1],所以函數(shù)f(x)=1+2sinx的最大值為3;
故答案為:3.

點(diǎn)評 本題考查了正弦函數(shù)的有界性;x∈R,則sinx∈[-1,1].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知直線l,m,平面α,且l⊥α,則l⊥m是m?α的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知命題p:?x>0,x3>0,那么¬p是(  )
A.?x>0,x3≤0B.$?{x_0}≤0,x_0^3≤0$C.?x<0,x3≤0D.$?{x_0}>0,x_0^3≤0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.m<2是方程$\frac{{x}^{2}}{m-2}$+$\frac{{y}^{2}}{m-1}$=1表示雙曲線的必要不充分條件.(從“充分必要”,“充分不必要”,“必要不充分”,“既不充分也不必要”中選擇一個(gè)正確的填寫).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,已知$cosA=\frac{1}{2}$,則sinA=( 。
A.$\frac{1}{2}$B.±$\frac{\sqrt{3}}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=(a-1)xa(a∈R),g(x)=|lgx|.
(Ⅰ)若f(x)是冪函數(shù),求a的值;
(Ⅱ)關(guān)于x的方程g(x-1)+f(1)=0在區(qū)間(1,3)上有兩不同實(shí)根x1,x2(x1<x2),求$a+\frac{1}{x_1}+\frac{1}{x_2}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.扇形的半徑為6,圓心角為$\frac{π}{3}$,則此扇形的面積為6π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)全集為R,A={x||x+1|<5},B={x|x2-2 x≥0}求A∩B,A∪B,A∩∁RB,B∩∁RA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)=$\left\{\begin{array}{l}{-\frac{1}{2}|x-2|,x≥1}\\{(\frac{1}{2})^{x}-1,0<x<1}\\{\frac{1}{x-m}+1,x≤0}\end{array}\right.$.
(Ⅰ)若m=1,畫出函數(shù)的簡圖,并指出函數(shù)的單調(diào)區(qū)間.
(Ⅱ)若函數(shù)y=f(x)的圖象與直線y=m-1(m>0)有兩個(gè)不同的交點(diǎn),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案