分析 (Ⅰ)由已知條件AD∥BC,PA⊥AD,從而得到BC⊥PA,再由BC⊥AB,即可得到BC⊥平面PAB,從而得出BC⊥PB;
(Ⅱ)由PA⊥AD,PA⊥AB即可得到PA⊥平面ABCD,從而連接AC,∠PCA便是PC與平面ABCD所成角,從而求出AC,PC的長(zhǎng),在直角三角形PAC中即可求出cos∠PCA.
解答 解:(Ⅰ)證明:∵A、D分別是RB、RC的中點(diǎn);
∴AD∥BC,∠PAD=∠RAD=∠RBC=90°;
∴PA⊥AD,PA⊥BC;
又BC⊥AB,PA∩AB=A;
∴BC⊥平面PAB;
∵PB?平面PAB;
∴BC⊥PB;
(Ⅱ)由PA⊥AD,PA⊥AB,AD∩AB=A;
∴PA⊥平面ABCD;
連接AC,則∠PCA是直線PC與平面ABCD所成的角;
∵AB=1,BC=2,∴AC=$\sqrt{5}$;
又PA=1,PA⊥AC,∴PC=$\sqrt{6}$;
∴在Rt△PAC中,cos$∠PCA=\frac{AC}{PC}=\frac{\sqrt{5}}{\sqrt{6}}=\frac{\sqrt{30}}{6}$;
∴PC與平面ABCD所成角的余弦值為$\frac{\sqrt{30}}{6}$.
點(diǎn)評(píng) 考查三角形中位線的性質(zhì),弄清折疊前后不變的量,線面垂直的判定定理及其性質(zhì),線面角的概念及求法,直角三角形邊的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{12}$個(gè)單位 | B. | 向右平移$\frac{π}{6}$個(gè)單位 | ||
C. | 向左平移$\frac{π}{12}$個(gè)單位 | D. | 向左平移$\frac{π}{6}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{10}$<x1x2<$\frac{1}{e}$ | B. | $\frac{1}{e}$<x1x2<1 | C. | 1<x1x2<e | D. | x1x2>e |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com