4.如圖,已知等腰直角三角形RBC,其中∠RBC=90°,RB=BC=2,點(diǎn)A,D分別是RB,RC的中點(diǎn),現(xiàn)將△RAD沿著邊AD折起到△PAD位置,使PA⊥AB,連結(jié)PB,PC
(Ⅰ)求證:BC⊥PB
(Ⅱ)求PC與平面ABCD所成角的余弦值.

分析 (Ⅰ)由已知條件AD∥BC,PA⊥AD,從而得到BC⊥PA,再由BC⊥AB,即可得到BC⊥平面PAB,從而得出BC⊥PB;
(Ⅱ)由PA⊥AD,PA⊥AB即可得到PA⊥平面ABCD,從而連接AC,∠PCA便是PC與平面ABCD所成角,從而求出AC,PC的長(zhǎng),在直角三角形PAC中即可求出cos∠PCA.

解答 解:(Ⅰ)證明:∵A、D分別是RB、RC的中點(diǎn);
∴AD∥BC,∠PAD=∠RAD=∠RBC=90°;
∴PA⊥AD,PA⊥BC;
又BC⊥AB,PA∩AB=A;
∴BC⊥平面PAB;
∵PB?平面PAB;
∴BC⊥PB;
(Ⅱ)由PA⊥AD,PA⊥AB,AD∩AB=A;
∴PA⊥平面ABCD;
連接AC,則∠PCA是直線PC與平面ABCD所成的角;
∵AB=1,BC=2,∴AC=$\sqrt{5}$;
又PA=1,PA⊥AC,∴PC=$\sqrt{6}$;
∴在Rt△PAC中,cos$∠PCA=\frac{AC}{PC}=\frac{\sqrt{5}}{\sqrt{6}}=\frac{\sqrt{30}}{6}$;
∴PC與平面ABCD所成角的余弦值為$\frac{\sqrt{30}}{6}$.

點(diǎn)評(píng) 考查三角形中位線的性質(zhì),弄清折疊前后不變的量,線面垂直的判定定理及其性質(zhì),線面角的概念及求法,直角三角形邊的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.給出下列命題:①若$\overrightarrow a$•$\overrightarrow b$<0,則$\overrightarrow a$、$\overrightarrow b$的夾角為鈍角;②若$\overrightarrow a$=(x1,y1),$\overrightarrow b$=(x2,y2),則$\overrightarrow a$∥$\overrightarrow b$?$\frac{x_1}{x_2}$=$\frac{y_1}{y_2}$;③若{${\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$}為空間的一組基底,則對(duì)于實(shí)數(shù)x、y、z滿足x$\overrightarrow a$+y$\overrightarrow b$+z$\overrightarrow c$=$\overrightarrow 0$時(shí),x2+y2+z2=0;④|$\overrightarrow p$+$\overrightarrow q$|•|$\overrightarrow p$-$\overrightarrow q$|=|${\overrightarrow p^2}$-${\overrightarrow q^2}$|;⑤$\overrightarrow p$在基底{$\overrightarrow i$,$\overrightarrow j$,$\overrightarrow k$}下的坐標(biāo)為(1,2,3),則在基底{$\overrightarrow i$+$\overrightarrow j$,$\overrightarrow j$+$\overrightarrow k$,$\overrightarrow k$+$\overrightarrow i$}下的坐標(biāo)為(0,2,1).
其中正確的是③⑤(把你認(rèn)為正確的命題序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知實(shí)數(shù)x,y滿足logax+2logxa+logxy=4,其中常數(shù)a>1,當(dāng)y取最大值2時(shí),對(duì)應(yīng)的x的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知a>0,函數(shù)f(x)=$\frac{a}{x}$+|lnx-a|.
(1)若對(duì)于任意x∈[1,e2],f(x)≤$\frac{3}{2}$恒成立,求實(shí)數(shù)a的取值范圍;
(2)若a=1,求方程f[f(x)]=x解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2x3-3ax2+1,且x=1為函數(shù)f(x)的一個(gè)極值點(diǎn).
(1)求a的值;
(2)證明:f(x)≤2x2-3x2-x+ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an},Sn為數(shù)列{an}的前n項(xiàng)和,a3=7,S4=24.求等差數(shù)列通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某大學(xué)四年級(jí)某班共50人.其中男生30人.女生20人.畢業(yè)前每人必須寫一篇畢業(yè)論文,共50篇論文,若從50篇論文中,按照男女同學(xué)比例的方法共選出5篇進(jìn)行展出.
(1)求選出的論文中女生寫的論文的篇數(shù);
(2)從選出的5篇論文中,求取得的這一篇是女生論文的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.為了得到函數(shù)y=$\frac{1}{2}$cos2x的圖象,可以把函數(shù)y=$\frac{1}{2}$sin(2x+$\frac{π}{3}$)的圖象上所有的點(diǎn)( 。
A.向右平移$\frac{π}{12}$個(gè)單位B.向右平移$\frac{π}{6}$個(gè)單位
C.向左平移$\frac{π}{12}$個(gè)單位D.向左平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=ex的圖象與函數(shù)g(x)=|ln(-x)|的圖象有兩個(gè)交點(diǎn)A(x1,y1),B(x2,y2),則(  )
A.$\frac{1}{10}$<x1x2<$\frac{1}{e}$B.$\frac{1}{e}$<x1x2<1C.1<x1x2<eD.x1x2>e

查看答案和解析>>

同步練習(xí)冊(cè)答案