分析 做出可行域,則可行域內(nèi)的點(diǎn)到P(-a,0)的最短距離的平方為6,利用可行域判斷出最優(yōu)解的位置,代入距離公式計(jì)算即可.
解答 解:做出可行域如圖所示:
則O到可行域的最短距離的平方為($\frac{4}{\sqrt{1+4}}$)2=$\frac{16}{5}$,
∵a>0,∴P(-a,0)在x軸負(fù)半軸上,
∴可行域內(nèi)的A點(diǎn)到P(-a,0)的距離最短.
解方程組$\left\{\begin{array}{l}{x+2y-4=0}\\{x-y+2=0}\end{array}\right.$得A(0,2),
∴a2+4=6,解得a=$\sqrt{2}$.
故答案為$\sqrt{2}$.
點(diǎn)評(píng) 本題考查了簡(jiǎn)單的線性規(guī)劃,做出可行域?qū)ふ易顑?yōu)解的位置是關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{15}{17}$ | B. | -$\frac{4}{5}$ | C. | $\frac{15}{17}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 1-$\sqrt{3}$ | C. | -$\sqrt{3}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 6 | C. | 12 | D. | 21 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=cos2x | B. | y=|sin$\frac{x}{2}$| | C. | y=sinx | D. | y=tan$\frac{x}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 2 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com