分析 (1)根據(jù)條件判斷數(shù)列為等差數(shù)列即可求數(shù)列{an}的通項公式;
(2)求出數(shù)列{bn}的通項公式,利用裂項法進(jìn)行求和即可.
解答 解:(1)∵數(shù)列{an}滿足an+1=an+4(n∈N*),
∴數(shù)列{an}是以公差為4,以a1=-20為首項的等差數(shù)列.
故數(shù)列{an}的通項公式為an=-20+4(n-1)=4n-24,(n∈N*),
數(shù)列{an}的前n項和An=2n2-22n,(n∈N*),
(2)∵bn=$\frac{2}{{A}_{n}+24n}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴前n項和公式Sn=1$-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
點(diǎn)評 本題主要考查等差數(shù)列的通項公式以及數(shù)列求和的應(yīng)用,利用裂項法是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)關(guān)系 | B. | 線性關(guān)系 | C. | 相關(guān)關(guān)系 | D. | 回歸關(guān)系 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com