某中學(xué)在高一開設(shè)了數(shù)學(xué)史等4門不同的選修課,每個(gè)學(xué)生必須選修,且只能從中選一門.該校高一的3名學(xué)生甲、乙、丙對這4門不同的選修課的興趣相同.
(Ⅰ)求3個(gè)學(xué)生選擇了3門不同的選修課的概率;
(Ⅱ)求恰有2門選修課這3個(gè)學(xué)生都沒有選擇的概率;
(Ⅲ)設(shè)隨機(jī)變量ξ為甲、乙、丙這三個(gè)學(xué)生選修數(shù)學(xué)史這門課的人數(shù),求ξ的分布列與數(shù)學(xué)期望.
(Ⅰ)根據(jù)分步計(jì)數(shù)原理總事件數(shù)是43
滿足條件的事件數(shù)是A43,
∴3個(gè)學(xué)生選擇了3門不同的選修課的概率:P1=
A34
43
=
3
8

(Ⅱ)恰有2門選修課這3個(gè)學(xué)生都沒有選擇的概率:P2=
C24
C13
A22
43
=
9
16

(Ⅲ)設(shè)某一選擇修課這3個(gè)學(xué)生選擇的人數(shù)為ξ,則ξ=0,1,2,3.
P(ξ=0)=
33
43
=
27
64
;
P(ξ=1)=
C13
32
43
=
27
64

P(ξ=2)=
C23
?3
43
=
9
64
;
P(ξ=3)=
1
43
=
1
64

∴ξ的分布列為:

精英家教網(wǎng)

∴期望Eξ=0×
27
64
+1×
27
64
+2×
9
64
+3×
1
64
=
3
4
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)在高一開設(shè)了數(shù)學(xué)史等4門不同的選修課,每個(gè)學(xué)生必須選修,且只能從中選一門.該校高一的3名學(xué)生甲、乙、丙對這4門不同的選修課的興趣相同.
(Ⅰ)求3個(gè)學(xué)生選擇了3門不同的選修課的概率;
(Ⅱ)求恰有2門選修課這3個(gè)學(xué)生都沒有選擇的概率;
(Ⅲ)設(shè)隨機(jī)變量ξ為甲、乙、丙這三個(gè)學(xué)生選修數(shù)學(xué)史這門課的人數(shù),求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)在高一開設(shè)了數(shù)學(xué)史等4門不同的選項(xiàng)修課,每個(gè)學(xué)生必須選項(xiàng)修,且只從中選一門.該校高一的3名學(xué)生甲、乙、丙對這4門選課的興趣相同,則3個(gè)學(xué)生選擇了3門不同的選修課的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年豐臺區(qū)期末理)(13分)

       某中學(xué)在高一開設(shè)了數(shù)學(xué)史等4門不同的選修課,每個(gè)學(xué)生必須選修,有只能從中選一

門。該校高一的3名學(xué)生甲、乙、丙對這4門不同的選修課的興趣相同。

       (Ⅰ)求3個(gè)學(xué)生選擇了3門不同的選修課的概率;

(Ⅱ)求恰有2門選修課這3個(gè)學(xué)生都沒有選擇的概率;

(Ⅲ)設(shè)隨機(jī)變量為甲、乙、丙這三個(gè)學(xué)生選修數(shù)學(xué)史這門課的人數(shù),求的分布列與數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)在高一開設(shè)了數(shù)學(xué)史等4門不同的選修課,每個(gè)學(xué)生必須選修,有只能從中選一門。該校高一的3名學(xué)生甲、乙、丙對這4門不同的選修課的興趣相同。(Ⅰ)求3個(gè)學(xué)生選擇了3門不同的選修課的概率;(Ⅱ)求恰有2門選修課這3個(gè)學(xué)生都沒有選擇的概率;(Ⅲ)設(shè)隨機(jī)變量為甲、乙、丙這三個(gè)學(xué)生選修數(shù)學(xué)史這門課的人數(shù),求的分布列

與數(shù)學(xué)期望。

查看答案和解析>>

同步練習(xí)冊答案