20.若函數(shù)f(x)=xsin2016+cosx,則該函數(shù)的圖象在點(diǎn)(2016,f(2016))處切線的斜率等于(  )
A.-2sin2016B.sin2016C.0D.2sin2016

分析 求出函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義,將x=2016代入即可得到所求切線的斜率.

解答 解:函數(shù)f(x)=xsin2016+cosx的導(dǎo)數(shù)為f′(x)=sin2016-sinx,
可得在點(diǎn)(2016,f(2016))處切線的斜率k=f′(2016)=sin2016-sin2016=0,
故選:C.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點(diǎn)處的導(dǎo)數(shù)即為曲線在該點(diǎn)處的切線的斜率,正確求導(dǎo)是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知$sin({\frac{π}{4}-x})=\frac{3}{5}$,則sin2x=$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在正項(xiàng)等比數(shù)列{an}中,a1a3=1,a2+a3=$\frac{4}{3}$,則$\underset{lim}{n→∞}$(a1+a2+…+an)=$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.定義域?yàn)閧x|x≠0}的函數(shù)f(x)滿足:f(xy)=f(x)f(y),f(x)>0且在區(qū)間(0,+∞)上單調(diào)遞增,若m滿足f(log3m)+f(log${\;}_{\frac{1}{3}}$m)≤2f(1),則實(shí)數(shù)m的取值范圍是( 。
A.[$\frac{1}{3}$,1)∪(1,3]B.[0,$\frac{1}{3}$)∪(1,3]C.(0,$\frac{1}{3}$]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知隨機(jī)變量x服從正態(tài)分布N(3,σ2),且P(x≤4)=0.84,則P(2<x<4)=( 。
A.0.84B.0.68C.0.32D.0.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.某藝校在一天的7節(jié)課中隨機(jī)安排語(yǔ)文、數(shù)學(xué)、外語(yǔ)三門文化課和四門藝術(shù)課各一節(jié),且課表的任兩節(jié)文化課都不能相鄰,則不同的安排方法有(  )
A.60種B.144種C.1440種D.5040種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在△ABC中,已知tanA+tanB+tanAtanB=1,若△ABC最大邊的長(zhǎng)為$\sqrt{6}$,則其外接圓的半徑為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.450°<α<540°,$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$=-sin$\frac{α}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若命題“?x∈R,ax2-ax-2<0”是真命題,則實(shí)數(shù)a的取值范圍是(-8,0].

查看答案和解析>>

同步練習(xí)冊(cè)答案