已知f(x)=ax2+bx+c,若f(0)=0,且f(x+1)=f(x)+x+1,則f(x)=
 
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:本題已用待定系數(shù)法給出了解析式,只要根據(jù)條件找出關(guān)于參數(shù)的方程,解方程組,求出參數(shù)a、b、c,即得到本題的結(jié)論.
解答: 解:∵f(x)=ax2+bx+c,若f(0)=0,
∴c=0.
∵f(x+1)=f(x)+x+1,
∴a(x+1)2+b(x+1)+c=ax2+bx+c+x+1,
即(2a-1)x+a+b-1=0.
2a-1=0
a+b-1=0
,
a=
1
2
b=
1
2

f(x)=
1
2
x2+
1
2
x

故答案為:
1
2
x2+
1
2
x
點評:本題考查的是待定系數(shù)法求函數(shù)的解析式,本題計算量不大,思維要求不高,屬于容易題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={x|x≤1或x≥2},集合A={x|x<1或x>3},B={x|x≤1或x>2},求(∁UA)∩(∁UB),(∁UA)∪(∁UB),∁U(A∪B),∁U(A∩B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=2-
4
-x2-4x+5
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1
12+2
+
1
22+4
+
1
32+6
+…+
1
n2+2n
=
3
4
-
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lg
1
2
x-1,且f′(a)=2,則實數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)的奇偶性f﹙x﹚=0,|x|≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l交橢圓
x2
20
+
y2
16
=1于M、N兩點,橢圓與y軸的正半軸交于B點,若△MBN的重心恰好落在橢圓的右焦點上,則直線l方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
cos(2x-φ)的圖象過點(
π
6
,
1
2
),
①求φ的值;
②將函數(shù)y=f(x)的圖象上各點的橫坐標縮短到原來的
1
2
,縱坐標不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在(0,
π
4
)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)f(x)滿足f(f(f(x)))=2x-3,求函數(shù)f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案