分析 (1)利用特殊角的三角函數(shù)值及兩角和的正弦函數(shù)公式化簡可得sinA=$\sqrt{3}$cosA,結(jié)合范圍A∈(0,π),且cosA≠0,即可求得tanA的值.
(2)由(1)及范圍$B∈(0,\frac{π}{3})$,可求$A-B=\frac{π}{3}-B∈(0,\frac{π}{3})$,利用已知及同角三角函數(shù)基本關(guān)系式可求cos(A-B)的值,進而利用兩角差的正弦函數(shù)公式即可計算得解.
解答 解:(1)因為 $sin(A+\frac{π}{6})=2cosA$,得$\frac{{\sqrt{3}}}{2}sinA+\frac{1}{2}cosA=2cosA$,
即sinA=$\sqrt{3}$cosA,
因為A∈(0,π),且cosA≠0,
所以$tanA=\sqrt{3}$,
(2)由(1)知$A=\frac{π}{3}$,
因為$B∈(0,\frac{π}{3})$,
所以$A-B=\frac{π}{3}-B∈(0,\frac{π}{3})$
因為sin2(A-B)+cos2(A-B)=1,$sin(A-B)=\frac{3}{5}$,
所以:cos(A-B)=$\frac{4}{5}$,
所以$sinB={sin^{\;}}[A-(A-B)]=sinAcos(A-B)-cosAsin(A-B)=\frac{{4\sqrt{3}-3}}{10}$.
點評 本題主要考查了特殊角的三角函數(shù)值,兩角和的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式,兩角差的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | 2π | C. | 3π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com