【題目】如圖,圓錐的展開側(cè)面圖是一個半圓,是底面圓的兩條互相垂直的直徑,為母線的中點(diǎn),已知過的平面與圓錐側(cè)面的交線是以為頂點(diǎn)、為對稱軸的拋物線的一部分.

1)證明:圓錐的母線與底面所成的角為;

2)若圓錐的側(cè)面積為,求拋物線焦點(diǎn)到準(zhǔn)線的距離.

【答案】1)答案見解析(2

【解析】

1)設(shè)底面圓的半徑為,圓錐的母線,因為圓錐的側(cè)面展開圖扇形弧長與圓錐的底面圓的周長相等,列出底面半徑關(guān)系式,即可證明:圓錐的母線與底面所成的角為.

2)因為圓錐的側(cè)面積為,即可求得其母線長.由⑴可知,可得.在平面建立坐標(biāo)系,以原點(diǎn),軸正方向,設(shè)拋物線方程,代入即可求得,進(jìn)而拋物線焦點(diǎn)到準(zhǔn)線的距離.

1)設(shè)底面圓的半徑為,圓錐的母線

圓錐的側(cè)面展開圖扇形弧長與圓錐的底面圓的周長相等

可得

由題意可知:底面圓

:

圓錐的母線與底面所成的角為

2 圓錐的側(cè)面積為

可得,:

可得

, 的中點(diǎn),可得

在平面建立坐標(biāo)系,以原點(diǎn),軸正方向.如圖:

設(shè)拋物線方程

代入可得

根據(jù)拋物線性質(zhì)可知, 拋物線焦點(diǎn)到準(zhǔn)線的距離為.

拋物線焦點(diǎn)到準(zhǔn)線的距離

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的焦距為2,左右焦點(diǎn)分別為,,以原點(diǎn)O為圓心,以橢圓C的半短軸長為半徑的圓與直線相切.

求橢圓C的方程;

設(shè)不過原點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn).

若直線的斜率分別為,,且,求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);

若直線l的斜率是直線OAOB斜率的等比中項,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若執(zhí)行下面的程序框圖,輸出的值為3,則判斷框中應(yīng)填入的條件是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直三棱柱ABCA1B1C1中,側(cè)面BCC1B1為正方形,A1B1⊥B1C1.設(shè)A1C與AC1交于點(diǎn)D,B1C與BC1交于點(diǎn)E.

求證:(1)DE∥平面ABB1A1;

(2)BC1⊥平面A1B1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與直線 相交于兩點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn) .

(1)當(dāng)k=1時,求的值;

(2)若的面積等于,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,該幾何體由半圓柱體與直三棱柱構(gòu)成,半圓柱體底面直徑,,,D為半圓弧的中點(diǎn),若異面直線BD所成角的大小為

1)證明:平面;

2)求該幾何體的表面積和體積;

3)求點(diǎn)D到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)調(diào)查,3個成年人中就有一個高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國際衛(wèi)生組織對大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:

年齡x

28

32

38

42

48

52

58

62

收縮壓單位

114

118

122

127

129

135

140

147

其中:

請畫出上表數(shù)據(jù)的散點(diǎn)圖;

請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程的值精確到

若規(guī)定,一個人的收縮壓為標(biāo)準(zhǔn)值的倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的倍及以上,則為高度高血壓人群一位收縮壓為180mmHg70歲的老人,屬于哪類人群?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某游戲公司對今年新開發(fā)的一些游戲進(jìn)行評測,為了了解玩家對游戲的體驗感,研究人員隨機(jī)調(diào)查了300名玩家,對他們的游戲體驗感進(jìn)行測評,并將所得數(shù)據(jù)統(tǒng)計如圖所示,其中.

1)求這300名玩家測評分?jǐn)?shù)的平均數(shù);

2)由于該公司近年來生產(chǎn)的游戲體驗感較差,公司計劃聘請3位游戲?qū)<覍τ螒蜻M(jìn)行初測,如果3人中有2人或3人認(rèn)為游戲需要改進(jìn),則公司將回收該款游戲進(jìn)行改進(jìn);若3人中僅1人認(rèn)為游戲需要改進(jìn),則公司將另外聘請2位專家二測,二測時,2人中至少有1人認(rèn)為游戲需要改進(jìn)的話,公司則將對該款游戲進(jìn)行回收改進(jìn).已知該公司每款游戲被每位專家認(rèn)為需要改進(jìn)的概率為,且每款游戲之間改進(jìn)與否相互獨(dú)立.

i)對該公司的任意一款游戲進(jìn)行檢測,求該款游戲需要改進(jìn)的概率;

ii)每款游戲聘請專家測試的費(fèi)用均為300/人,今年所有游戲的研發(fā)總費(fèi)用為50萬元,現(xiàn)對該公司今年研發(fā)的600款游戲都進(jìn)行檢測,假設(shè)公司的預(yù)算為110萬元,判斷這600款游戲所需的最高費(fèi)用是否超過預(yù)算,并通過計算說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該?忌纳龑W(xué)情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結(jié)論正確的是  

A. 與2015年相比,2018年一本達(dá)線人數(shù)減少

B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了

C. 2015年與2018年藝體達(dá)線人數(shù)相同

D. 與2015年相比,2018年不上線的人數(shù)有所增加

查看答案和解析>>

同步練習(xí)冊答案