【題目】已知雙曲線方程為1,雙曲線的一支上不同的三點A(x1,y1),B(6,),C(x2,y2)到焦點F(5,0)的距離成等差數(shù)列.
(1)求m的值;
(2)試求x1+x2的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)設點,直線與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=+.
(1)當m=0時,求不等式f(x)≤9的解集;
(2)當m=2時,若x∈(1,4),f(x) 2xa<0,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在五面體中,側面是正方形,是等腰直角三角形,點是正方形對角線的交點,且.
(1)證明:平面;
(2)若側面與底面垂直,求五面體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某“雙一流”大學專業(yè)獎學金是以所學專業(yè)各科考試成績作為評選依據(jù),分為專業(yè)一等獎學金(獎金額元)、專業(yè)二等獎學金(獎金額元)及專業(yè)三等獎學金(獎金額元),且專業(yè)獎學金每個學生一年最多只能獲得一次.圖(1)是統(tǒng)計了該校年名學生周課外平均學習時間頻率分布直方圖,圖(2)是這名學生在年周課外平均學習時間段獲得專業(yè)獎學金的頻率柱狀圖.
(Ⅰ)求這名學生中獲得專業(yè)三等獎學金的人數(shù);
(Ⅱ)若周課外平均學習時間超過小時稱為“努力型”學生,否則稱為“非努力型”學生,列聯(lián)表并判斷是否有的把握認為該校學生獲得專業(yè)一、二等獎學金與是否是“努力型”學生有關?
(Ⅲ)若以頻率作為概率,從該校任選一名學生,記該學生年獲得的專業(yè)獎學金額為隨機變量,求隨機變量的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設正四面體ABCD的所有棱長都為1米,有一只螞蟻從點A開始按以下規(guī)則前進:在每一個頂點處等可能地選擇通過這個頂點的三條棱之一,并且沿著這條棱爬到盡頭,則它爬了4米之后恰好位于頂點A的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國“一帶一路”戰(zhàn)略構思提出后, 某科技企業(yè)為抓住“一帶一路”帶來的機遇, 決定開發(fā)生產一款大型電子設備, 生產這種設備的年固定成本為萬元, 每生產臺,需另投入成本(萬元), 當年產量不足臺時, (萬元); 當年產量不小于臺時 (萬元), 若每臺設備售價為萬元, 通過市場分析,該企業(yè)生產的電子設備能全部售完.
(1)求年利潤 (萬元)關于年產量(臺)的函數(shù)關系式;
(2)年產量為多少臺時 ,該企業(yè)在這一電子設備的生產中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,,分別為橢圓的左,右焦點,橢圓上點的橫坐標等于右焦點的橫坐標,其縱坐標等于短半軸長的,則橢圓的離心率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com