16.函數(shù)y=sin(2x+$\frac{π}{4}$)在一個(gè)周期內(nèi)的圖象可能是( 。
A.B.C.D.

分析 結(jié)合圖象,利用特殊點(diǎn),判斷即可.

解答 解:由題意可知,x=0時(shí),y=$\frac{\sqrt{2}}{2}$,排除B,D;
x=-$\frac{π}{8}$時(shí),y=0,排除C.
故選:A.

點(diǎn)評(píng) 本題考查正弦函數(shù)的圖象的判斷,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若a,b∈R,且滿足條件(a+1)2+(b-1)2<1,則函數(shù)y=log(a+b)x是增函數(shù)的概率是$\frac{1}{4}$-$\frac{1}{2π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某高中為適應(yīng)“新高考模式改革”,滿足不同層次學(xué)生的需要,決定從高一年級(jí)開始,在每周的周二、周四、周五的課外活動(dòng)期間同時(shí)開設(shè)物理、化學(xué)、生物和信息技術(shù)輔導(dǎo)講座,每位有興趣的同學(xué)可以在任何一天參加任何一門科目的輔導(dǎo)講座,也可以放棄任何一門科目的輔導(dǎo)講座(規(guī)格:各科達(dá)到預(yù)定的人數(shù)時(shí)稱為滿座,否則稱為不滿座),統(tǒng)計(jì)數(shù)據(jù)表明,以上各學(xué)科講座各天滿座的概率如表:
 物理化學(xué)生物信息技術(shù)
周二 $\frac{3}{4}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{1}{4}$
周四 $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$
周五 $\frac{2}{3}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{3}$
(1)求一周內(nèi)物理輔導(dǎo)講座在周二、周四、周五都不滿座的概率;
(2)設(shè)周四各輔導(dǎo)講座的科目數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.不等式|x+2|>3的解集是( 。
A.(-∞,-5)∪(1,+∞)B.(-5,1)C.(-∞,-1)∪(5,+∞)D.(-1,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.表中數(shù)據(jù)是我國(guó)各種能源消費(fèi)量占當(dāng)年能源消費(fèi)總量的百分率,由表可知,從2011年到2014年,消費(fèi)量占比增長(zhǎng)率最大的能源是(  )
我國(guó)各種能源消費(fèi)的百分率
原油(%)天然氣(%)原煤(%)核能(%)水力發(fā)電(%)再生能源(%)
2011年17.74.570.40.76.00.7
2014年17.55.666.01.08.11.8
A.天然氣B.核能C.水力發(fā)電D.再生能源

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知關(guān)于x的二次方程x2-2(2k+1)x+k2-3=0有實(shí)數(shù)根,且兩根之積等于兩根之和的2倍,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.l1:ax+2y+6=0,l2:x+(a+1)y+a2-1=0,l1⊥l2,則a=-$\frac{2}{3}$;l1∥l2,則a=1或-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}滿足:a1=a,a∈[0,$\frac{1}{2}$],an+1=-an2+an+t(t∈R,n∈N*).
(1)若at≠0,寫出一組a、t的值,使數(shù)列{an}是常數(shù)列;
(2)若t=$\frac{1}{4}$,記bn=$\frac{1}{2}$-an,求證:bn+1=bn2.并求$\lim_{n→∞}{a_n}$的值;
(3)若a=0,0<t≤$\frac{1}{4}$,求證:對(duì)于任意的n∈N*,n≥2,0<an<$\sqrt{t}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=x4+$\frac{1}{3}$ax3+$\frac{1}{16}$ax2+b,其中a,b∈R,若x=0是函數(shù)f(x)唯一的極值點(diǎn),則實(shí)數(shù)a的取值范圍是[0,2).

查看答案和解析>>

同步練習(xí)冊(cè)答案