11.若復(fù)數(shù)z=$\frac{a-i}{1-i}$是純虛數(shù)(i是虛數(shù)單位),則實(shí)數(shù)a的值為(  )
A.$-\sqrt{2}$B.-1C.1D.$\sqrt{2}$

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由實(shí)部為0且虛部不為0求得a值.

解答 解:∵z=$\frac{a-i}{1-i}$=$\frac{(a-i)(1+i)}{(1-i)(1+i)}=\frac{(a+1)+(a-1)i}{2}$是純虛數(shù),
∴$\left\{\begin{array}{l}{a+1=0}\\{a-1≠0}\end{array}\right.$,解得:a=-1.
故選:B.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.同時(shí)拋擲三枚質(zhì)地均勻、大小相同的硬幣一次,則至少有兩枚硬幣正面向上的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.對(duì)任意的θ∈(0,$\frac{π}{2}$),不等式$\frac{1}{{{{sin}^2}θ}}$+$\frac{4}{{{{cos}^2}θ}}$≥|2x-1|恒成立,則實(shí)數(shù)x的取值范圍是( 。
A.[-3,4]B.[0,2]C.$[{-\frac{3}{2},\frac{5}{2}}]$D.[-4,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某國(guó)際旅行社共有9名專業(yè)導(dǎo)游,其中5人會(huì)英語(yǔ),3人會(huì)俄語(yǔ),1人既會(huì)英語(yǔ)又會(huì)俄語(yǔ),若在同一天要接待5個(gè)不同的外國(guó)旅游團(tuán)隊(duì),其中有3個(gè)隊(duì)要安排會(huì)英語(yǔ)的導(dǎo)游,2個(gè)隊(duì)要安排會(huì)俄語(yǔ)的導(dǎo)游,則不同的安排方法共有多少種?(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(1)如果三角形的邊長(zhǎng)a、b、c滿足等式a2+b2+c2=ab+bc+ca,求證:此三角形一定是正三角形;
(2)若a、b、c、$\sqrt{a}$+$\sqrt$+$\sqrt{c}$皆為有理數(shù),證明:$\sqrt{a}$、$\sqrt$、$\sqrt{c}$為有理數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}滿足2an+1=an+2+an(n∈N*),且a3+a7=20,a2+a5=14.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{1}{({a}_{n}-1)({a}_{n}+1)}$,數(shù)列{bn}的前n項(xiàng)和Sn,求證:Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知△ABC的三個(gè)頂點(diǎn)在以O(shè)為球心的球面上,且cosA=$\frac{2\sqrt{2}}{3}$,BC=1,AC=3,三棱錐O-ABC的體積為$\frac{\sqrt{14}}{6}$,則球O的表面積為( 。
A.36πB.16πC.12πD.$\frac{16π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.從1、2、3、4、5、6、7、8、9中任取兩個(gè)奇數(shù)和兩個(gè)偶數(shù),排成沒(méi)有重復(fù)數(shù)字的四位數(shù),這樣的四位數(shù)的個(gè)數(shù)是( 。
A.1440B.2880C.720D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知$\overrightarrow{a}$=(2,k),$\overrightarrow$=(k-1,k(k+1)),且$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)k的值為-3或0.

查看答案和解析>>

同步練習(xí)冊(cè)答案