16.已知數(shù)列{an}滿足2an+1=an+2+an(n∈N*),且a3+a7=20,a2+a5=14.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{1}{({a}_{n}-1)({a}_{n}+1)}$,數(shù)列{bn}的前n項(xiàng)和Sn,求證:Sn<$\frac{1}{2}$.

分析 (Ⅰ)由2an+1=an+2+an(n∈N*),得數(shù)列{an}為等差數(shù)列,設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,解出首項(xiàng)和公差,從而寫出通項(xiàng)公式和求和公式;
(Ⅱ)根據(jù){an}的通項(xiàng),化簡bn,并拆成兩項(xiàng)的差,注意前面乘一個(gè)系數(shù),然后運(yùn)用裂項(xiàng)相消求和,應(yīng)注意消去哪些項(xiàng),保留哪些項(xiàng),可以多寫幾項(xiàng),找出規(guī)律.

解答 解:(Ⅰ)由2an+1=an+2+an(n∈N*),得數(shù)列{an}為等差數(shù)列,
設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,
∵a3+a7=20,a2+a5=14.
∴a1=2,d=2,
∴an=2+(n-1)×2=2n,
(Ⅱ)bn=$\frac{1}{({a}_{n}-1)({a}_{n}+1)}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Sn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=$\frac{1}{2}$(1-$\frac{1}{2n+1}$),
當(dāng)n∈N+,Sn=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)<$\frac{1}{2}$

點(diǎn)評(píng) 本題主要考查等差數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,同時(shí)考查數(shù)列求和的重要方法:裂項(xiàng)相消求和,應(yīng)注意求和時(shí)哪些項(xiàng)消去,哪些項(xiàng)保留.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在一次圍棋比賽中,共有24人參加,現(xiàn)今成6組,每組進(jìn)行單循環(huán)賽,每組的第一名共6人,再分成2組進(jìn)行單循環(huán)賽,兩組的第一名決冠亞軍,一共進(jìn)行了多少場(chǎng)比賽?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1({a>b>0}),F(xiàn)1,F(xiàn)2是左右焦點(diǎn),A,B是長軸兩端點(diǎn),點(diǎn)P(a,b)與F1,F(xiàn)2圍成等腰三角形,且${S_{△P{F_1}{F_2}}}$=$\sqrt{3}$.
(I)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)Q是橢圓上異于A,B的動(dòng)點(diǎn),直線x=-4與QA,QB分別交于M,N兩點(diǎn).
(i)當(dāng)$\overrightarrow{Q{F_1}}$=λ$\overrightarrow{MN}$時(shí),求Q點(diǎn)坐標(biāo);
(ii)過點(diǎn)M,N,F(xiàn)1三點(diǎn)的圓是否經(jīng)過x軸上不同于點(diǎn)F1的定點(diǎn)?若經(jīng)過,求出定點(diǎn)坐標(biāo),若不經(jīng)過,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),若f(x)+g(x)=3x,則下列結(jié)論正確的是( 。
A.f(1)=$\frac{8}{3}$B.g(1)=$\frac{10}{3}$C.若a>b,則f(a)>f(b)D.若a>b,則g(a)>g(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若復(fù)數(shù)z=$\frac{a-i}{1-i}$是純虛數(shù)(i是虛數(shù)單位),則實(shí)數(shù)a的值為( 。
A.$-\sqrt{2}$B.-1C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)直線y=$\frac{1}{2}$x+b是曲線y=lnx的一條切線,則b的值為( 。
A.ln2-1B.ln2-2C.2ln2-1D.2ln2-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.盒子中的紅、白、黑、黃4個(gè)大小相同的球,從中抽取一個(gè),則取出白球的概率為( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將9個(gè)學(xué)生分配到甲、乙、丙三個(gè)宿舍,每宿舍至多4人((床鋪不分次序),則不同的分配方法有( 。
A.3710B.11130C.21420D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.2015年7月,“國務(wù)院關(guān)于積極推進(jìn)“‘互聯(lián)網(wǎng)+’行動(dòng)的指導(dǎo)意見”正式公布,在“互聯(lián)網(wǎng)+”的大潮下,我市某高中“微課堂”引入教學(xué),某高三教學(xué)教師錄制了“導(dǎo)數(shù)的應(yīng)用”與“概率的應(yīng)用”兩個(gè)單元的微課視頻放在所教兩個(gè)班級(jí)(A班和B班)的網(wǎng)頁上,A班(實(shí)驗(yàn)班,基礎(chǔ)較好)共有學(xué)生50人,B班(普通班,基礎(chǔ)較差)共有學(xué)生60人,該教師規(guī)定兩個(gè)班的每一名同學(xué)必須在某一天觀看其中一個(gè)單元的微課視頻,第二天經(jīng)過統(tǒng)計(jì),A班有30人觀看了“導(dǎo)數(shù)的應(yīng)用”視頻,其他20人觀看了“概率的應(yīng)用”視頻,B班有25人觀看了“導(dǎo)數(shù)的應(yīng)用”視頻,其他35人觀看了“概率的應(yīng)用”視頻.
(1)完成下列2×2列聯(lián)表:
 觀看“導(dǎo)數(shù)的應(yīng)用”
視頻人數(shù)
觀看“概率的應(yīng)用”
視頻人數(shù)
總計(jì)
A班   
B班   
總計(jì)   
判斷是否有95%的把握認(rèn)為學(xué)生選擇兩個(gè)視頻中的哪個(gè)與班級(jí)有關(guān)?
(2)在A班中用分層抽樣的方法抽取5人進(jìn)行學(xué)習(xí)效果調(diào)查;
①求抽取的5人中觀看“導(dǎo)數(shù)的應(yīng)用”視頻的人數(shù)及觀看“概率的應(yīng)用”視頻的人數(shù);
②在抽取的5人中抽取2人,求這2人中至少有一個(gè)觀看“概率的應(yīng)用”視頻的概率;
參考公式:k2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
參考數(shù)據(jù):
P(x2≥k00.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

查看答案和解析>>

同步練習(xí)冊(cè)答案