3.閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出S的值為( 。
A.0B.1C.2D.3

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量S的值,模擬程序的運(yùn)行過(guò)程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:當(dāng)n=2時(shí),滿足進(jìn)行循環(huán)的條件,S=0,n=3;
當(dāng)n=3時(shí),滿足進(jìn)行循環(huán)的條件,S=1,n=4;
當(dāng)n=4時(shí),滿足進(jìn)行循環(huán)的條件,S=0,n=5;
當(dāng)n=5時(shí),不滿足進(jìn)行循環(huán)的條件,
故輸出的S=0,
故選:A

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時(shí),常采用模擬循環(huán)的方法解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,(a>b>0)過(guò)點(diǎn)M(0,-$\sqrt{2}$),離心率為$\frac{\sqrt{2}}{2}$.
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)已知橢圓C2:x2+$\frac{{y}^{2}}{2}$=1,過(guò)點(diǎn)M引兩條斜率分別為k,4k的直線分別交C1,C2于點(diǎn)P,Q,問(wèn)直線PQ是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知數(shù)列{an}滿足a1=1,若n為奇數(shù)時(shí),有an+1=2an+1;若n為偶數(shù)時(shí),an+1=an+n.則該數(shù)列的第7項(xiàng)a7的值為(  )
A.37B.32C.35D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在四邊形ABCD中,AB=7,AC=6,$cos∠BAC=\frac{11}{14}$,CD=6sin∠DAC,則BD的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知定義在R上的偶函數(shù)f(x)滿足f(x+4)=f(x)+f(2),且當(dāng)x∈[0,2]時(shí),y=f(x)單調(diào)遞減,給出以下四個(gè)命題:
①f(2)=0;    
②y=f(x)在[8,10]單調(diào)遞增;
③x=4為函數(shù)y=f(x)圖象的一條對(duì)稱軸; 
④若方程f(x)=m在[-6,-2]上的兩根為x1,x2,則x1+x2=-8
以上命題中不正確命題的序號(hào)為  ( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)復(fù)數(shù)z滿足(1+i)z=2i,則z的共軛復(fù)數(shù)$\overline{z}$=( 。
A.-1-iB.-1-iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.電視臺(tái)組織中學(xué)生知識(shí)競(jìng)賽,共設(shè)有5個(gè)版塊的試題,主題分別是:立德樹(shù)人、社會(huì)主義核心價(jià)值觀、依法治國(guó)理念、中國(guó)優(yōu)秀傳統(tǒng)文化、創(chuàng)新能力.某參賽隊(duì)從中任選2個(gè)主題作答,則“立德樹(shù)人”主題被該隊(duì)選中的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知x,y滿足$\left\{\begin{array}{l}x+2y-3≤0\\ x+3y-3≥0\\ y≤1\end{array}\right.$,z=2x+y的最大值為m,若正數(shù)a,b滿足a+b=m,則$\frac{1}{a}+\frac{4}$的最小值為( 。
A.3B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知$\frac{1}{tanα}$+tanα=$\frac{5}{2}$,則2sin2(3π-α)-3cos($\frac{π}{2}$+α)•sin($\frac{3π}{2}$-α)+2的值為$\frac{12}{5}$或$\frac{6}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案