已知橢圓的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知點,和面內(nèi)一點,過點任作直線與橢圓相交于兩點,設(shè)直線的斜率分別為,若,試求滿足的關(guān)系式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={0,1},集合B={x|x>a},若A∩B=∅,則實數(shù)a的范圍是(  )
A.a≤1B.a≥1C.a≥0D.a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如果y=f(x)的定義域為R,對于定義域內(nèi)的任意x,存在實數(shù)a使得f(x+a)=f(-x)成立,則稱此函數(shù)具有“P(a)性質(zhì)”.給出下列命題:
①函數(shù)y=sinx具有“P(a)性質(zhì)”;
②若奇函數(shù)y=f(x)具有“P(2)性質(zhì)”,且f(1)=1,則f(2015)=1;
③若函數(shù)y=f(x)具有“P(4)性質(zhì)”,圖象關(guān)于點(1,0)成中心對稱,且在(-1,0)上單調(diào)遞減,則y=f(x)在(-2,-1)上單調(diào)遞減,在(1,2)上單調(diào)遞增;
④若不恒為零的函數(shù)y=f(x)同時具有“P(0)性質(zhì)”和“P(3)性質(zhì)”,且函數(shù)y=g(x)對?x1,x2∈R,都有|f(x1)-f(x2)|≥|g(x1)-g(x2)|成立,則函數(shù)y=g(x)是周期函數(shù).
其中正確的是①③④(寫出所有正確命題的編號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆云南曲靖市高三上半月考一數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)為函數(shù)的零點,且滿足,則這樣的零點有( )

A.個 B.

C.個 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆云南曲靖市高三上半月考一數(shù)學(xué)試卷(解析版) 題型:選擇題

若點在角的終邊上,則的值為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆四川成都七中高三10月段測數(shù)學(xué)(文)試卷(解析版) 題型:填空題

已知是拋物線的焦點,上的兩個點,線段的中點為,則的面積等于 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ex-ax2-bx-1,其中a、b∈R,e=2.71828…為自然對數(shù)的底數(shù).設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓O的方程為x2+y2=1,設(shè)圓O與x軸交于P,Q兩點,M是圓O上異于P,Q的任意一旦,直線PM交直線l:x=3于點P′,直線QM交直線l于點Q′,求證:以P′Q′為直徑的圓C總過定點,并求出定點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若(x3+x-2n的展開式中只有第6項系數(shù)最大,則展開式中的常數(shù)項是210.

查看答案和解析>>

同步練習(xí)冊答案