A. | 1 | B. | 2 | C. | 4 | D. | 無法確定 |
分析 先根據(jù)拋物線方程求出p的值,再由拋物線的性質(zhì)可得到答案.
解答 解:∵拋物線y2=4x,∴P=2,
設(shè)經(jīng)過點(diǎn)F的直線與拋物線相交于A、B兩點(diǎn),
其橫坐標(biāo)分別為x1,x2,利用拋物線定義,
AB中點(diǎn)橫坐標(biāo)為x0=$\frac{1}{2}$(x1+x2)=$\frac{1}{2}$(|AB|-P)=$\frac{1}{2}$(6-2)=2.
故選:B.
點(diǎn)評 本題主要考查了拋物線的性質(zhì).屬中檔題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[kπ-\frac{3π}{8},kπ+\frac{π}{8}],(k∈Z)$ | B. | $[kπ-\frac{π}{8},kπ+\frac{3π}{8}],(k∈Z)$ | ||
C. | $[2kπ-\frac{3π}{4},2kπ+\frac{π}{4}],(k∈Z)$ | D. | $[2kπ-\frac{π}{4},2kπ+\frac{3π}{4}],(k∈Z)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com