若正數(shù)a、b、c、d滿足
c
-
d
a
-
b
>0,a+b=c+d,試將a,b,c,d按從小到大的順序排列并說明理由.
考點(diǎn):綜合法與分析法(選修)
專題:綜合法
分析:利用綜合法與分析法,結(jié)合等式a+b=c+d,即可比較出a,b,c,d的大小.
解答: 解:∵正數(shù)a、b、c、d滿足
c
-
d
a
-
b
>0  ①
∴c>d,a>b;
將①式平方可得,c+d-2
cd
>a+b-2
ab
,
∵a+b=c+d,
∴cd<ab;
設(shè)c=A+s,d=A-s,a=A+t,b=A-t,且s>0,t>0,
∴A2-t2<A2-s2,
∴s2<t2,
∴s<t,
∴A+t>A+s>A-s>A-t.
即a>c>d>b.
點(diǎn)評(píng):本題主要考察了運(yùn)用綜合法與分析法比較數(shù)的大小,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈R,x2-x-1≥0恒成立”的否定是( 。
A、?x∈R,x2-x-1<0恒成立
B、?x∈R,x2-x-1≤0恒成立
C、?x∈R,x2-x-1≥0成立
D、?x∈R,x2-x-1<0恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)、g(x)是兩個(gè)實(shí)系數(shù)首項(xiàng)系數(shù)為1的三次多項(xiàng)式,方程f(x)=0,g(x)=0,f(x)=g(x)共有八個(gè)不同的實(shí)根.證明:這八個(gè)根中最大和最小的不能都是f(x)=0的根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)勾函數(shù)f(x)=ax+
b
x
,(a>0,b>0)是一種常見的基本初等函數(shù),為了研究對(duì)勾函數(shù)f(x)=x+
4
x
的一些性質(zhì),例如單調(diào)性,奇偶性,最值等性質(zhì).首先通過列表法,列舉了函數(shù)f(x)=x+
4
x
在(0,+∞)上部分自變量與函數(shù)值的對(duì)應(yīng)值表,如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 4.8 7.57
請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.
(Ⅰ)函數(shù)f(x)=x+
4
x
,(x>0)在區(qū)間(0,2)上遞減;函數(shù)f(x)=x+
4
x
,(x>0)在區(qū)間
 
上遞增.當(dāng)x=
 
時(shí),y最小=
 

(Ⅱ)證明:函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間(0,2)遞減.
(Ⅲ)思考:函數(shù)f(x)=x+
4
x
(x<0)時(shí),有最值嗎?是最大值還是最小值?(注意:第(Ⅲ)問不必說明理由,直接寫答案即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a是實(shí)數(shù),函數(shù)f(x)=4x+|2x-a|(x∈R).
(1)求證:函數(shù)f(x)不是奇函數(shù);
(2)當(dāng)a≤0時(shí),解關(guān)于x的方程f(x)=a2
(3)當(dāng)a>0時(shí),求函數(shù)y=f(x)的值域(用a表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD的底面是邊長為a的正方形,所有側(cè)棱長相等且等于a,若其外接球的半徑為R,則
a
R
等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系內(nèi),設(shè)M(x1,y1)、N(x2,y2)為不同的兩點(diǎn),直線l的方程為ax+by+c=0,設(shè)δ=
ax1+by1+c
ax2+by2+c
.有下列四個(gè)說法:
①存在實(shí)數(shù)δ,使點(diǎn)N在直線l上;
②若δ=1,則過M、N兩點(diǎn)的直線與直線l平行;
③若δ=-1,則直線l經(jīng)過線段MN的中點(diǎn);
④若δ>1,則點(diǎn)M、N在直線l的同側(cè),且直線l與線段MN的延長線相交.
上述說法中,所有正確說法的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若用一個(gè)平面去截球體,所得截面圓的面積為16π,球心到該截面的距離是3,則這個(gè)球的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex+x2-a(a∈R,e為自然對(duì)數(shù)的底數(shù)),若存在b∈[0,1]使f(f(b))=b成立,則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案