13.用“五點法”畫出函數(shù)y=sinx+1,x∈[0,2π]的簡圖并寫出它在[0,2π]的單調(diào)區(qū)間和最值.

分析 根據(jù)五點法進行求值列表作圖,結(jié)合函數(shù)的性質(zhì)進行求解即可.

解答 解:列表

  x0$\frac{π}{2}$π$\frac{3π}{2}$
y=sinx+112101
畫圖:…(5分)


函數(shù)y=sinx+1的單調(diào)遞增區(qū)間為$[{0,\frac{π}{2}}]和[{\frac{3π}{2},2π}]$,遞減區(qū)間為$({\frac{π}{2},\frac{3π}{2}})$,

當(dāng)$x=\frac{π}{2}$時,y=sinx+1取得最大值2,當(dāng)$x=\frac{3π}{2}$時y=sinx+1取得最小值0.…(10分)

點評 本題主要考查三角函數(shù)圖象和性質(zhì),要求熟練掌握五點法作圖,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在球內(nèi)有相距1cm的兩個平行截面,截面面積分別是5πcm2和8πcm2,球心不在截面之間,則球面的面積是( 。
A.36πcm2B.27πcm2C.20πcm2D.12πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.直線l:ax+$\frac{1}{a}$y-1=0與x,y軸的交點分別為A,B,直線l與圓O:x2+y2=1的交點為C,D.給出下面三個結(jié)論:①?a≥1,S△AOB=$\frac{1}{2}$;  ②?a≥1,|AB|<|CD|;③?a≥1,S△COD<$\frac{1}{2}$,則所有正確結(jié)論的序號是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.甲方有一農(nóng)場,乙方有一工廠.由于乙方生產(chǎn)須占用甲方的資源,因此甲方有權(quán)向乙方索賠以彌補經(jīng)濟損失并獲得一定凈收入,在乙方不賠付甲方的情況下,乙方的年利潤x(元)與年產(chǎn)量t(噸)滿足函數(shù)關(guān)系x=2000t${\;}^{\frac{1}{2}}$.若乙方每生產(chǎn)一噸產(chǎn)品必須賠付甲方s元(以下稱s為賠付價格).
(1)將乙方的利潤w(元)表示為年產(chǎn)量t(噸)的函數(shù),并求出乙方獲得最大利潤的年產(chǎn)量;
(2)甲方每年受乙方生產(chǎn)影響的經(jīng)濟損失金額y=0.002t2(元),在乙方按照獲得最大利潤的產(chǎn)量進行生產(chǎn)的前提下,甲方要在索賠中獲得最大凈收入,應(yīng)向乙方要求的賠付價格s是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.372°所在象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)cos(π+α)=$\frac{{\sqrt{3}}}{2}$(π<α<$\frac{3}{2}$π),那么cos(2π-α)的值是(  )
A.-$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.對任意實數(shù)x都有mx2+mx+1>0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知x∈(-π,0),cosx=$\frac{4}{5}$,則tan2x=( 。
A.$\frac{7}{24}$B.$-\frac{7}{24}$C.$\frac{24}{7}$D.$-\frac{24}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若函數(shù)fA(x)的定義域為A=[a,b),且fA(x)=($\frac{x}{a}$+$\frac{x}$-1)2-$\frac{2b}{a}$+1,其中a,b為任意正實數(shù),且a<b.
(1)求函數(shù)fA(x)的最小值和最大值;
(2)若x1∈Ik=[k2,(k+1)2),x2∈Ik+1=[(k+1)2,(k+2)2),其中k是正整數(shù),對一切正整數(shù)k,不等式f${\;}_{I_k}}$(x1)+f${\;}_{{I_{k+1}}}}$(x2))<m都有解,求m的取值范圍;
(3)若對任意x1,x2,x3∈A,都有$\sqrt{{f_A}({x_1})}$,$\sqrt{{f_A}({x_2})}$,$\sqrt{{f_A}({x_3})}$為三邊長構(gòu)成三角形,求$\frac{a}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案