12.集合A={x∈N|x≤6},B={x∈R||2-x|>2},則A∩B=(  )
A.{0,5,6}B.{5,6}C.{4,6}D.{x|4<x≤6}

分析 先化簡(jiǎn)集合A、B,再求出A∩B的值.

解答 解:集合A={x∈N|x≤6}={0,1,2,3,4,5,6},
B={x∈R||2-x|>2}={x∈R|x<0或x>4},
所以A∩B={5,6}.
故選:B.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x,y滿足不等式組$\left\{\begin{array}{l}{x-3y+2≥0}\\{x+y-6≤0}\\{y≥1}\end{array}\right.$,若目標(biāo)函數(shù)z=x+ay取得最小值的最優(yōu)解有無數(shù)個(gè),則$\frac{y}{x-a}$的取值范圍是[$\frac{1}{8}$,$\frac{2}{7}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知全集U=R,若A={y|y=2x,x≤0},則∁RA=( 。
A.(-∞,0]∪(1,+∞)B.(1,+∞)C.(-∞,0)∪[1,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某學(xué)校高一年級(jí)學(xué)生某次身體素質(zhì)體能測(cè)試的原始成績(jī)采用百分制,已知所有這些這些學(xué)生的原始成績(jī)均分布在[50,100]內(nèi),發(fā)布成績(jī)使用等級(jí)制,各等級(jí)劃分標(biāo)準(zhǔn)見表,規(guī)定:A,B,C三級(jí)為合格等級(jí),D為不合格等級(jí).
百分制85分及以上70分到84分60分到69分60分以下
等級(jí)ABCD
為了解該校高一年級(jí)學(xué)生身體素質(zhì)情況,從中抽取了n名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖如圖所示,樣本中分?jǐn)?shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖所示.

(1)求n和頻率分布直方圖中的x,y的值;
(2)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該校高一學(xué)生中任選3人,求至少有1人成績(jī)是合格等級(jí)的概率;
(3)在選取的樣本中,從A,C兩個(gè)等級(jí)的學(xué)生中隨機(jī)抽取了3名學(xué)生進(jìn)行調(diào)研,記ξ表示抽取的3名學(xué)生中為C等級(jí)的學(xué)生人數(shù),求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合M={x|x2>1},N={-2,-1,0,1,2},則M∩N=(  )
A.{0}B.{2}C.{-2,-1,1,2}D.{-2,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在某次考試中,從甲、乙兩個(gè)班各抽取10名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)分析,兩個(gè)班成績(jī)的莖葉圖如圖所示,成績(jī)不小于90分的為及格.
(Ⅰ)用樣本估計(jì)總體,請(qǐng)根據(jù)莖葉圖對(duì)甲、乙兩個(gè)班級(jí)的成績(jī)進(jìn)行比較;
(Ⅱ)在甲、乙兩班成績(jī)及格的同學(xué)中再隨機(jī)抽出2名同學(xué)的試卷做分析,求抽出的2人恰好都是甲班學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若復(fù)數(shù)$z=\frac{1-3i}{1+i}$,則|z+1|=(  )
A.3B.2C.$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|3x+a|-a.
(1)若不等式f(x)≤6的解集為非空子集{x|-1≤x≤2},求實(shí)數(shù)a的取值范圍;
(2)已知m+n=1(m,n>0),若$|{x-3}|-f(x)≤\frac{1}{m}+\frac{1}{n}(a>0)$對(duì)于任意實(shí)數(shù)x恒成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.我國(guó)延遲退休年齡將借鑒國(guó)外經(jīng)驗(yàn),擬對(duì)不同群體采取差別措施,并以“小步慢走”的方式實(shí)施.現(xiàn)對(duì)某市工薪階層關(guān)于“延遲退休年齡”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們?cè)率杖氲念l數(shù)分布及對(duì)“延遲退休年齡”反對(duì)的人數(shù)如下表.
月收入(元)[1500,2500)[2500,3500)[3500,4500)[4500,5500)[5500,6500)[6500,7500)
頻數(shù)510141164
反對(duì)人數(shù)4811621
(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)估算月收入高于5500的調(diào)查對(duì)象中,持反對(duì)態(tài)度的概率;
(Ⅱ)若對(duì)月收入在[1500,2500),[2500,3500)的被調(diào)查對(duì)象中各隨機(jī)選取兩人進(jìn)行跟蹤調(diào)查,記選中的4人中贊成“延遲退休年齡”的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案