分析 直接由圖寫出終邊落在陰影部分(含邊界)的角的集合,將-950°12′寫成k•360°+m(k∈Z)的形式,判斷m是否在120°<α<250°內(nèi),即可判斷出-950°12′是否是該集合中的角.
解答 解:由圖形可知,在0°~360°范圍內(nèi),終邊落在陰影區(qū)域內(nèi)的角為120°≤α≤250°,
∴終邊落在陰影區(qū)域內(nèi)的角的集合S={α|120°+k•360°≤α≤250°+k•360°,k∈Z}.
∵-950°12′=-3×360°+129°48′,且120°<129°48′<250°,
∴-950°12′是該集合中的角.
點(diǎn)評(píng) 本題考查象限角和軸線角,考查了角的集合的表示法,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1+i | B. | -1-i | C. | i | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x≤0,x2-x≤0 | B. | ?x>0,x2-x≤0 | C. | ?x≤0,x2-x≤0 | D. | ?x>0,x2-x≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,2) | B. | (2,0) | C. | ($\sqrt{14}$,0) | D. | (0,$\sqrt{14}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍,縱坐標(biāo)不變,再把得到的曲線向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,得到曲線C2 | |
B. | 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍,縱坐標(biāo)不變,再把得到的曲線向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,得到曲線C2 | |
C. | 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,得到曲線C2 | |
D. | 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,得到曲線C2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com