3.如圖所示,試寫出終邊落在陰影區(qū)域內(nèi)的角的集合S(包括邊界),并指出-950°12′是否是該集合中的角.

分析 直接由圖寫出終邊落在陰影部分(含邊界)的角的集合,將-950°12′寫成k•360°+m(k∈Z)的形式,判斷m是否在120°<α<250°內(nèi),即可判斷出-950°12′是否是該集合中的角.

解答 解:由圖形可知,在0°~360°范圍內(nèi),終邊落在陰影區(qū)域內(nèi)的角為120°≤α≤250°,
∴終邊落在陰影區(qū)域內(nèi)的角的集合S={α|120°+k•360°≤α≤250°+k•360°,k∈Z}.
∵-950°12′=-3×360°+129°48′,且120°<129°48′<250°,
∴-950°12′是該集合中的角.

點(diǎn)評(píng) 本題考查象限角和軸線角,考查了角的集合的表示法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.復(fù)數(shù)z=$\frac{1+5i}{5-i}$=( 。
A.-1+iB.-1-iC.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.命題p:?x>0,x2-x>0的否定形式為( 。
A.?x≤0,x2-x≤0B.?x>0,x2-x≤0C.?x≤0,x2-x≤0D.?x>0,x2-x≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的一個(gè)焦點(diǎn)坐標(biāo)是(  )
A.(0,2)B.(2,0)C.($\sqrt{14}$,0)D.(0,$\sqrt{14}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知曲線C1:y=cos x,C2:y=sin (2x+$\frac{2π}{3}$),則下面結(jié)論正確的是( 。
A.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍,縱坐標(biāo)不變,再把得到的曲線向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,得到曲線C2
B.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍,縱坐標(biāo)不變,再把得到的曲線向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,得到曲線C2
C.把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,得到曲線C2
D.把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.圓C1:x2+y2+2x+6y+6=0,圓C2:x2+y2-4x-2y+4=0,Q,P都是到兩圓的切線長(zhǎng)相等的兩點(diǎn),若直線QP將兩圓的圓心連線分成的兩段長(zhǎng)分別為m,n(m>n),則$\frac{m}{n}$=$\frac{14}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=$\sqrt{3}sin2x+2{cos^2}$x+m在$x∈[{0,\frac{π}{2}}]$上的最大值是6.
(1)求m的值以及函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,f(A)=5,a=4,且△ABC的面積為$\sqrt{3}$,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\sqrt{3}+\sqrt{3}t}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的方程為sinθ-$\sqrt{3}$ρcos2θ=0.
(1)求曲線C的直角坐標(biāo)方程;
(2)求直線l與曲線C交點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$.
(Ⅰ)求直角坐標(biāo)系下曲線C1與曲線C2的方程;
(Ⅱ)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最大值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案