18.命題p:?x>0,x2-x>0的否定形式為( 。
A.?x≤0,x2-x≤0B.?x>0,x2-x≤0C.?x≤0,x2-x≤0D.?x>0,x2-x≤0

分析 運(yùn)用全稱命題的否定為特稱命題,以及量詞和不等號(hào)的變化,即可得到命題的否定.

解答 解:由全稱命題的否定為特稱命題,可得
命題p:?x>0,x2-x>0的否定形式為:
?x>0,x2-x≤0.
故選:D.

點(diǎn)評(píng) 本題考查命題的否定,注意全稱命題的否定為特稱命題,以及量詞和不等號(hào)的變化,考查轉(zhuǎn)化能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且 a=b,sin2B=2sinAsinC則cosB=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在平行四邊形ABCD中,已知AB=4,AD=3,$\overrightarrow{CP}=3\overrightarrow{PD}$,$\overrightarrow{AP}•\overrightarrow{BP}=2$,則$\overrightarrow{AB}•\overrightarrow{AD}$的值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.電視臺(tái)與某企業(yè)簽訂了播放兩套連續(xù)劇的合作合同.約定每集電視連續(xù)劇播出后,另外播出2分鐘廣告.已知連續(xù)劇甲每集播放80分鐘,收視觀眾為60萬,連續(xù)劇乙每集播放40分鐘,收視觀眾為20萬,根據(jù)合同,要求電視臺(tái)每周至少播放12分鐘廣告,而電視劇播放時(shí)間每周不多于320分鐘,設(shè)每周播放甲乙兩套電視劇分別為x集、y集.
(Ⅰ)用x,y列出滿足條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)電視臺(tái)每周應(yīng)播映兩套連續(xù)劇各多少集,才能使收視觀眾最多,最高收視觀眾有多少萬人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.4月16日摩拜單車進(jìn)駐大連市旅順口區(qū),綠色出行引領(lǐng)時(shí)尚,旅順口區(qū)進(jìn)行了“經(jīng)常使用共享單車與年齡關(guān)系”的調(diào)查,得下列2×2列聯(lián)表:
年輕人非年輕人合計(jì)
經(jīng)常使用單車用戶10020120
不常使用單車用戶602080
合計(jì)16040200
則得到的X2=2.1(小數(shù)點(diǎn)后保留一位).
(附:X2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若{an}是正項(xiàng)等比數(shù)列,已知a2=1,那么前3項(xiàng)之和S3的最小值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=3|x-1|+x2-2x+3+a的最小值為5,則a等于( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,試寫出終邊落在陰影區(qū)域內(nèi)的角的集合S(包括邊界),并指出-950°12′是否是該集合中的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.由1,2,3,4,5,6,六個(gè)數(shù)字組成一個(gè)無重復(fù)數(shù)字的六位數(shù),則有且只有2個(gè)偶數(shù)相鄰的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{3}{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案