4.已知等比數(shù)列{an}滿足a2=$\frac{1}{4}$,a2•a8=4(a5-1),則a4+a5+a6+a7+a8=(  )
A.20B.31C.62D.63

分析 設(shè)等比數(shù)列{an}的公比為q,由a2=$\frac{1}{4}$,a2•a8=4(a5-1),可得$\frac{{a}_{5}}{{q}^{3}}$=$\frac{1}{4}$,$\frac{{a}_{5}}{{q}^{3}}•{a}_{5}{q}^{3}$=4(a5-1),聯(lián)立解出即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q,
∵a2=$\frac{1}{4}$,a2•a8=4(a5-1),
∴$\frac{{a}_{5}}{{q}^{3}}$=$\frac{1}{4}$,$\frac{{a}_{5}}{{q}^{3}}•{a}_{5}{q}^{3}$=4(a5-1),
解得a5=2,q3=8,解得q=2.
,則a4+a5+a6+a7+a8=$\frac{2}{2}+2$+2×2+2×22+2×23=31.
故選:B.

點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=Sn+1,其中n∈N*.則數(shù)列{an}的通項(xiàng)公式是an=2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖所示,四邊形ABCD是腰長為2的等腰梯形,其上底長為2,下底長為4,E是腰BC上一點(diǎn),P為上底CD上一點(diǎn),且$\overrightarrow{BE}$=$λ\overrightarrow{BC}$,$\overrightarrow{DP}$=$λ\overrightarrow{DC}$,λ∈[0,1],則$\overrightarrow{AP}$•$\overrightarrow{AE}$的取值范圍是[4,10].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.側(cè)棱垂直于底面的棱柱叫作直棱柱,已知直四棱柱的底面是正方形,其所有棱長之和為12,表面積為6,則其體積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且(Sn-1)2=anSn(n∈N*
求S1、S2、S3的值,并求出Sn及數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知a∈{-2,0,1,3,4},b∈{1,2},則函數(shù)f(x)=xlna+b為增函數(shù)的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=bcosC+$\frac{\sqrt{3}}{3}$csinB.
(1)若a=2,b=$\sqrt{7}$,求c;
(2)若$\sqrt{3}$sin(2A-$\frac{π}{6}$)-2sin2(C-$\frac{π}{12}$)=0,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.求下列各三角函數(shù)的值:
cos$\frac{9π}{4}$=$\frac{\sqrt{2}}{2}$;
sin780°=$\frac{\sqrt{3}}{2}$;
sin(-60°)=-$\frac{\sqrt{3}}{2}$;
tan$\frac{8π}{3}$=-$\sqrt{3}$;
sin75°=$\frac{\sqrt{2}+\sqrt{6}}{4}$;
tan45°=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=$\left\{\begin{array}{l}{2x,x≥0}\\{-{x}^{2},x<0}\\{\;}\end{array}\right.$的反函數(shù)是(  )
A.y=$\left\{\begin{array}{l}{\frac{x}{2},x≥0}\\{\sqrt{-x},x<0}\\{\;}\end{array}\right.$B.y=$\left\{\begin{array}{l}{\frac{x}{2},x≥0}\\{-\sqrt{-x},x<0}\\{\;}\end{array}\right.$
C.y=$\left\{\begin{array}{l}{2x,x≥0}\\{\sqrt{-x},x<0}\end{array}\right.$D.y=$\left\{\begin{array}{l}{2x,x≥0}\\{-\sqrt{-x},x<0}\\{\;}\end{array}\right.$

查看答案和解析>>

同步練習(xí)冊答案