(本小題滿分14分)如圖,在四面體A?BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中點.
(1)證明:平面ABC平面ADC;
(2)若ÐBDC=60°,求二面角C?BM?D的大。
(1)見解析(2)
解析試題分析:(1)證明面面垂直幾何法就要證線面垂直,要證線面垂直就要證線線垂直;線線、線面、面面垂直之間相互轉(zhuǎn)化. 由題意知從點出發(fā)的三條件直線兩兩垂直,從而,又在平面內(nèi),所以可證得平面ABC平面ADC.證明面面垂直向量法可證法向量垂直,由題意知從點出發(fā)的三條件直線兩兩垂直,可以建立空間直角坐標(biāo)系.
(2)求二面角可用兩種向量法(面向量和法向量)或幾何法,面向量法即在兩個半平面內(nèi)分別從頂點出發(fā)與棱垂直的兩個向量所成的角.幾何法(三垂線法)重點是找到二面角的平面角,①在幾何體內(nèi)找第三個平面與二面角的兩個半平都垂直,交線所成角即為平面角;如果找不到可以退而求其次,找第三個平面與二面角的其中一個半平垂直.②與另外一個半交于點,過點作交線的垂線③過點作棱的垂線④連所得到的為二面角的平面角⑤在直角三角形求角.用法向量法求二面角不容易判斷所求出的是二面角還是其補(bǔ)角,所以盡量不用它.
試題解析:
(1)
又 (4分)
又 (6分)
(2)作CG^BD于點G,作GH^BM于點HG,連接CH. (8分)
又
又
又
所以ÐCHG為二面角的平面角. (10分)
在Rt△BCD中,
CD=BD=,CG=CD,BG=BC
在Rt△BDM中,HG==
在Rt△CHG中,tanÐCHG=
所以即二面角C-BM-D的大小為60°. (14分)
考點:二面角的平面角及求法;直線與平面垂直的判定;平面與平面垂直的判定.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F(xiàn),G,H分別為BP,BE,PC的中點。
(Ⅰ)求證:平面FGH⊥平面AEB;
(Ⅱ)在線段PC上是否存在一點M,使PB⊥平面EFM?若存在,求出線段PM的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知在側(cè)棱垂直于底面的三棱柱中,,且,點是中點.
(1)求證:平面⊥平面;
(2)若直線與平面所成角的正弦值為,
求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐P-ABCD中,側(cè)面PCD底面ABCD,PDCD,底面ABCD是直角梯形,AB∥DC,ADC-900,AB=AD=PD=1.CD=2.
(I)求證:BC平面PBD:
(II)設(shè)E為側(cè)棱PC上異于端點的一點,,試確定的值,使得二面角
E-BD-P的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐P-ABCD的底面為直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.
(I) 試判斷直線CD與平面PAD是否垂直,并簡述理由;
(II)求證:平面PAB⊥平面ABCD;
(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com