4.設(shè)集合S={0,1,2,3,4,5},A是S的一個(gè)子集,當(dāng)x∈A時(shí),若有x-1∉A且x+1∉A,則稱x為集合A的一個(gè)“孤立元素”,寫出S中所有無“孤立元素”的4元子集.

分析 根據(jù)元素與集合的關(guān)系可進(jìn)行判斷,A是S的一個(gè)子集,若有x-1∉A且x+1∉A,則稱x為集合A的一個(gè)“孤立元素”,可以理解為x的“兄和弟”都不在集合里,x才叫“孤立元素”.

解答 解:若0∈A,那么必有1∈A,已有0,1 在選2個(gè)元素來構(gòu)成集合:有(2,3),(3,4),(4,5)3種,即:{0,1,2,3},{0,1,3,4},{0,1,4,5}.
若0∉A,1∈A,那么必有2∈A,已有1,2 再選2個(gè)元素(3,4),(4,5)2種,即:{1,2,3,4},{1,2,4,5},
若0∉A,1∉A,A那么必有2,3,4,5∈A,1種 即{2,3,4,5}.因此,S的無孤立元素的含四個(gè)元素的子集的個(gè)數(shù)是6.
分別為:{0,1,2,3},{0,1,3,4},{0,1,4,5},{4,1,2,3},{4,1,2,5},{2,3,4,5}.

點(diǎn)評(píng) 本題考查元素與集合的關(guān)系,要有4個(gè)元素,討論思想,只需討論其中兩個(gè)元素即可.讀懂題意非常重要.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-a,x<1}\\{4(x-a)(x-2a),x≥1}\end{array}\right.$
(1)若a=1,求f(x)的最小值;
(2)若f(x)恰有2個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.用一個(gè)與圓柱母線成600角的平面截圓柱,截口為一個(gè)橢圓,則該橢圓的離心率為(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)集合A={x|-1≤x≤1},B={x|m-1≤x≤1-2m}.
(1)若B⊆A,求m的取值范圍.
(2)若A⊆B,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義取整函數(shù)[x],它表示x的整數(shù)部分,即[x]是不超過x的最大整數(shù).例如[2]=2,[3.1]=3,[-2.6]=-3等.設(shè)函數(shù)f(x)=$\frac{201{6}^{x}}{1+201{6}^{x}}$,x>0,則函數(shù)g(x)=[f(x)-$\frac{1}{2}$]+[f(-x)-$\frac{1}{2}$]的值域?yàn)椋ā 。?table class="qanwser">A.{-1}B.{0}C.{-1,0}D.{-1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若點(diǎn)P(x,y)是圓x2+y2=4上任意一點(diǎn),則xy的最小值是-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.一橢圓上任一點(diǎn)P與橢圓上兩定點(diǎn)A(x0,y0),B(-x0,-y0)的連線的斜率之積是-$\frac{3}{4}$,則橢圓的離心率$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow{a}$=(2,-1,-2),$\overrightarrow$=(1,1,-4).
(1)計(jì)算2$\overrightarrow{a}$-3$\overrightarrow$和|2$\overrightarrow{a}$-3$\overrightarrow$|;
(2)求<$\overrightarrow{a}$,$\overrightarrow$>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知長(zhǎng)方體ABCD-A′B′C′D′,AA′=1,AB=$\sqrt{3}$.BC=2,求異面直線A′B與DC所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案