【題目】為了普及環(huán)保知識,增強環(huán)保意識,某大學從理工類專業(yè)的A班和文史類專業(yè)的B班各抽取20名同學參加環(huán)保知識測試.統(tǒng)計得到成績與專業(yè)的列聯(lián)表如下所示:

優(yōu)秀

非優(yōu)秀

總計

A

14

6

20

B

7

13

20

總計

21

19

40

則下列說法正確的是 ( )

A. 有99%的把握認為環(huán)保知識測試成績與專業(yè)有關

B. 有99%的把握認為環(huán)保知識測試成績與專業(yè)無關

C. 有95%的把握認為環(huán)保知識測試成績與專業(yè)有關

D. 有95%的把握認為環(huán)保知識測試成績與專業(yè)無關

【答案】C

【解析】

根據(jù)表中的數(shù)據(jù),利用獨立性檢驗的計算公式,求得的值,即可得到結論.

由表中數(shù)據(jù)及公式得K2的觀測值k=≈4.912 3,

根據(jù)臨界值表可知有95%的把握認為環(huán)保知識測試成績與專業(yè)有關,故選C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知A(1,2),B(a,1),C(2,3),D(-1,b)(a,b∈R)是復平面上的四個點,且向量對應的復數(shù)分別為z1,z2.

(1)z1+z2=1+i,z1,z2;

(2)|z1+z2|=2,z1-z2為實數(shù),a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三角形ABC的三邊長為a、bc,且其中任意兩邊長均不相等.,,成等差數(shù)列.1)比較的大小,并證明你的結論;(2)求證B不可能是鈍角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知斜率為k的直線l經(jīng)過點(-1,0),且與拋物線C:y2=2px(p>0,p為常數(shù))交于不同的兩點M,N.k=時,弦MN的長為.

(1)求拋物線C的標準方程.

(2)過點M的直線交拋物線于另一點Q,且直線MQ經(jīng)過點B(1,-1),判斷直線NQ是否過定點?若過定點,求出該點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},{bn}均為各項都不相等的數(shù)列,Sn為{an}的前n項和,an+1bn=Sn+1(n∈N).
(1)若a1=1,bn= ,求a4的值;
(2)若{an}是公比為q的等比數(shù)列,求證:存在實數(shù)λ,使得{bn+λ}為等比數(shù)列;
(3)若{an}的各項都不為零,{bn}是公差為d的等差數(shù)列,求證:a2 , a3 , …,an…成等差數(shù)列的充要條件是d=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解甲、乙兩廠的產(chǎn)品質量,分別從兩廠生產(chǎn)的產(chǎn)品中各隨機抽取10件,測量產(chǎn)品中某種元素的含量(單位:毫克),其測量數(shù)據(jù)的莖葉圖如圖所示.

規(guī)定:當產(chǎn)品中此種元素的含量大于18毫克時,認定該產(chǎn)品為優(yōu)等品.

(1)試比較甲、乙兩廠生產(chǎn)的產(chǎn)品中該種元素含量的平均值的大小;

(2)從乙廠抽出的上述10件產(chǎn)品中隨機抽取3件,求抽到的3件產(chǎn)品中優(yōu)等品數(shù)X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】0,1,2,3,4這五個數(shù)字,可以組成多少個滿足下列條件的沒有重復數(shù)字的五位數(shù)?

(1)4整除;

(2)21 034大的偶數(shù);

(3)左起第二、四位是奇數(shù)的偶數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從1,2,3,4,5中隨機取出兩個不同的數(shù),則其和為奇數(shù)的概率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,橢圓C 與y 軸交于A,B 兩點,且|AB|=2.
(Ⅰ)求橢圓C 的方程;
(Ⅱ)設點P是橢圓C上的一個動點,且點P在y軸的右側.直線PA,PB與直線x=4分別交于M,N兩點.若以MN為直徑的圓與x 軸交于兩點E,F(xiàn),求點P橫坐標的取值范圍及|EF|的最大值.

查看答案和解析>>

同步練習冊答案