【題目】如圖,在直三棱柱中, 分別是棱的中點,點在棱上,且, , .
(1)求證: 平面;
(2)當時,求二面角的余弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1)由線面平行的判定定理證明;(2)利用空間直角坐標系解題。
試題解析:
解:(1)(法一)連接交于點,連接
由分別是棱中點,故點為的重心
在中,有
,又平面
平面
(法二)取的中點,連接
由是棱的中點, 為的中點,
為的中位線,即平面
又為棱的中點, 為的中點
由,由,且為直三棱柱
,進而得
,即平面
又 平面平面
又平面 平面
(2)由為直三棱柱
平面,取的中點,連接
是棱的中點, ,即平面
為等邊三角形
為的中點 且
故以為坐標原點,以射線分別為軸, 軸, 軸的正半軸建立如圖所示的空間直角坐標系
則
, ,
設平面的法向量為
則: ,不妨取,則
設平面的法向量為
則: ,不妨取,則
記二面角為
故二面角的余弦值為.
科目:高中數學 來源: 題型:
【題目】某商場購進一種每件價格為90元的新商品,在商場試銷時發(fā)現:銷售單價(元/件)與每天銷售量(件)之間滿足如圖所示的關系.
(1)求出與之間的函數關系式;
(2)寫出每天的利潤與銷售單價之間的函數關系式,并求出售價定為多少時,每天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩圓的圓心分別為,P為一個動點,且直線的斜率之積為.
(Ⅰ)求動點P的軌跡M的方程;
(Ⅱ)是否存在過點A(2,0)的直線l與軌跡M交于不同的兩點C、D,使得?若存在,求直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,某企業(yè)每年消耗電費約24萬元,為了節(jié)能減排,決定安裝一個可使用15年的太陽能供電設備接入本企業(yè)電網,安裝這種供電設備的工本費(單位:萬元)與太陽能電池板的面積(單位:平方米)成正比,比例系數約為0.5.為了保證正常用電,安裝后采用太陽能和電能互補供電的模式.假設在此模式下,安裝后該企業(yè)每年消耗的電費(單位:萬元)與安裝的這種太陽能電池板的面積(單位:平方米)之間的函數關系是為常數).記為該村安裝這種太陽能供電設備的費用與該村15年共將消耗的電費之和.
(1)試解釋的實際意義,并建立關于的函數關系式;
(2)當為多少平方米時,取得最小值?最小值是多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(1)求證:函數f(x)-g(x)必有零點;
(2)設函數G(x)=f(x)-g(x)-1
①若函數G(x)有兩相異零點且在上是減函數,求實數m的取值范圍。
②是否存在整數a,b使得的解集恰好為若存在,求出a,b的值,若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓()的離心率為,且a2=2b.
(1)求橢圓的方程;
(2)直線l:x﹣y+m=0與橢圓交于A,B兩點,是否存在實數m,使線段AB的中點在圓x2+y2=5上,若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知圓錐曲線(為參數)和定點,、是此圓錐曲線的左、右焦點,以原點為極點,以軸的正半軸為極軸建立極坐標系.
(1)求直線的直角坐標方程;
(2)經過點且與直線垂直的直線交此圓錐曲線于、兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩人玩猜數字游戲,先由甲心中任想一個數字記為,再由乙猜甲剛才想的數字,把乙猜的數字記為,且、.若,則稱甲乙“心有靈犀”.現任意找兩人玩這個游戲,則二人“心有靈犀”的概率為__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com