分析 求函數(shù)的導數(shù),利用導數(shù)的規(guī)律性轉化為等比數(shù)列的前n項和,進行求解即可.
解答 解:∵f1(x)=exsinx,
∴f2(x)=f1′(x)=exsinx+excosx,
f3(x)=f2′(x)=exsinx+excosx+excosx-exsinx=2excosx,
f4(x)=f3′(x)=2excosx-2exsinx,
f5(x)=f4′(x)=2excosx-2exsinx-2exsinx-2excosx=-4exsinx=-4f1(x),
f6(x)=f5′(x)=-4exsinx-4excosx=-4(exsinx+excosx)=-4f2(x),
則f1(0)=0,f2(0)=1,f3(0)=2,f4(0)=2,
f5(0)=0,f6(0)=-4,f7(0)=-8,f8(0)=-8,
…
歸納得每四個的和構成一個5為首項,以-4為公比的等比數(shù)列
∵2012=4×503,
∴f1(0)+f2(0)+f3(0)+…+f2012(0)=$\frac{5×[1-(-4)^{503}]}{1-(-4)}$=1+4503,
故答案為:1+4503
點評 本題主要考查函數(shù)值的計算,函數(shù)的導數(shù)的公式的應用,以及數(shù)列求和,求函數(shù)的導數(shù),得到fn(0)的規(guī)律是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | log2a | B. | log2(log2a) | C. | (log2a)2 | D. | log2$\sqrt{a}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com