9.已知θ是第三象限角,且sinθ-2cosθ=-$\frac{2}{5}$,則sinθ+cosθ=-$\frac{31}{25}$.

分析 由已知得sin2θ+cos2θ=(2cosθ-$\frac{2}{5}$)2+cos2θ=1,由此求出cosθ,進(jìn)而求出sinθ,由此能求出結(jié)果.

解答 解:∵θ是第三象限角,且sinθ-2cosθ=-$\frac{2}{5}$,
∴sin2θ+cos2θ=(2cosθ-$\frac{2}{5}$)2+cos2θ=1,
解得cosθ=-$\frac{7}{25}$或cosθ=$\frac{3}{5}$,(舍)
∴sinθ=-$\sqrt{1-(-\frac{7}{25})^{2}}$=-$\frac{24}{25}$,
∴sinθ+cosθ=-$\frac{31}{25}$.
故答案為:-$\frac{31}{25}$.

點(diǎn)評 本題考查三角函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意同角三角函數(shù)誘導(dǎo)公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.log25,2-3,${3^{\frac{1}{2}}}$三個數(shù)中最小的數(shù)是2-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.對于滿足|f(n+1)-f(n)|≤($\frac{1}{10}$)n(n∈N)的所有f(n),若f(0)=1,則f(10)的值所在的區(qū)間一定是( 。
A.(-1,1)B.(0,2)C.(-$\frac{1}{9}$,$\frac{19}{9}$)D.(-$\frac{1}{5}$,$\frac{9}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=mlnx-x2+2(m∈R).
(Ⅰ)當(dāng)m=1時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)在x=1時取得極大值,求證:f(x)-f′(x)≤4x-3;
(Ⅲ)若m≤8,當(dāng)x≥1時,恒有f(x)-f′(x)≤4x-3恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.復(fù)數(shù)z=$\frac{ai}{1+2i}$(a<0),其中i為虛數(shù)單位,|z|=$\sqrt{5}$,則a的值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.一位網(wǎng)民在網(wǎng)上光顧某網(wǎng)店,經(jīng)過一番瀏覽后,對該店鋪中的A,B,C三種商品有購買意向.已知該網(wǎng)民購買A種商品的概率為$\frac{3}{4}$,購買B種商品的槪率為$\frac{2}{3}$,購買C種商品的概率為$\frac{1}{2}$.假設(shè)該網(wǎng)民是否購買這三種商品相互獨(dú)立
(1)求該網(wǎng)民至少購買2種商品的概率;
(2)用隨機(jī)變量η表示該網(wǎng)民購買商品的種數(shù),求η的槪率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=alnx-ax-3(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=-1時,證明:在(1,+∞)上,f(x)+2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若角α,β的終邊關(guān)于x軸對稱,則α,β之間的關(guān)系是α+β=2kπ(k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.甲乙兩人下棋,若甲獲勝的概率為$\frac{1}{5}$,甲乙下成和棋的概率為$\frac{2}{5}$,則乙不輸棋的概率為$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊答案