分析 由三角形的面積公式可得∠APB=∠BPC=∠APC=120°,以AC為底邊向三角形ABC外作正三角形ACQ,可得PA+PB+PC=BQ,由余弦定理可得.
解答 解:由三角形的面積公式可得S△PAB=$\frac{1}{2}$•PA•PBsin∠APB,
S△PBC=$\frac{1}{2}$•PB•PCsin∠BPC,S△PAC=$\frac{1}{2}$•PA•PCsin∠APC,
∴已知式子可化為sin∠APB=sin∠BPC=sin∠APC,
由幾何關(guān)系可得∠APB=∠BPC=∠APC=120°,
以AC為底邊向三角形ABC外作正三角形ACQ,
由題意可得∠ABC=90°,AB=1,AC=2,
∴∠BAC=60°,∠BAQ=120°,
故PA+PB+PC=BQ=$\sqrt{{1}^{2}+{2}^{2}-2×1×2×cos120°}$=$\sqrt{7}$
故答案為:$\sqrt{7}$
點(diǎn)評(píng) 本題考查正余弦定理解三角形,涉及三角形的面積公式和余弦定理的應(yīng)用,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com