19.已知函數(shù)${f_n}(x)=a{x^n}+bx+c(a,b,c∈R)$
(1)若f1(x)=3x+1,f2(x)為偶函數(shù),求a,b,c的值;
(2)若對任意實(shí)數(shù)x,不等式$2x≤{f_2}(x)≤\frac{1}{2}{(x+1)^2}$恒成立,求f2(-1)的取值范圍.

分析 (1)由f1(x)=3x+1,f2(x)=ax2+bx+c為偶函數(shù),運(yùn)用偶函數(shù)的定義和恒等式的知識即可得到a,b,c;
(2)先令x=1,可得f2(1)=2,即a+b+c=2,再由不等式恒成立,結(jié)合二次函數(shù)的判別式小于等于0,及配方思想,可得a的范圍,進(jìn)而得到f2(-1)=4a-2,可得范圍.

解答 解:(1)f1(x)=3x+1,f2(x)=ax2+bx+c為偶函數(shù),
可得a+b=3,b=0,c=1,
解得a=3,b=0,c=1;
(2)可令x=1,即有2≤f2(1)≤2,
則f2(1)=2,即a+b+c=2,
由2x≤f2(x)恒成立,即為ax2+(b-2)x+c≥0,
可得a>0,且(b-2)2-4ac≤0,
即有(a+c)2-4ac≤0,即有(a-c)2≤0,
則a=c成立,
即有b=2-2a,又f2(x)-$\frac{1}{2}$(x+1)2=ax2+(2-2a)x+a-$\frac{1}{2}$(x+1)2=(a-$\frac{1}{2}$)(x-1)2
對任意的x∈R,都有f2(x)≤$\frac{1}{2}$(x+1)2,即有0<a≤$\frac{1}{2}$,
故f2(-1)=a-b+c=4a-2的取值范圍是(-2,0].

點(diǎn)評 本題考查函數(shù)的性質(zhì)和應(yīng)用,考查不等式恒成立問題的解法,注意運(yùn)用判別式和配方思想,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.四棱臺的兩底邊長分別為1cm,2cm,高是1cm,它的側(cè)面積為( 。
A.6cm2B.$\frac{{3\sqrt{5}}}{4}$cm2C.$\frac{2}{3}$$\sqrt{3}$cm2D.3$\sqrt{5}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,延長AB和DC相交于點(diǎn)P,若$\frac{PB}{PA}$=$\frac{1}{2}$,$\frac{PC}{PD}$=$\frac{1}{3}$,則$\frac{BC}{AD}$的值為$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.一個(gè)空間幾何體的三視圖如圖所示,根據(jù)圖中數(shù)據(jù):
(1)畫出該幾何體的直觀圖;
(2)求該幾何體的表面積;
(3)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知△ABC中,∠ABC=90°,AB=1.AC=2,若△ABC內(nèi)部的一點(diǎn)P滿足$\frac{{S}_{△PAB}}{PA•PB}$=$\frac{{S}_{△PBC}}{PB•PC}=\frac{{S}_{△PAC}}{PA•PC}$,則PA+PB+PC的值為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.運(yùn)行如圖的程序,若x=1,則輸出的y等于( 。
A.8B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若曲線x2-4x+y2-2y+4=0(y≥1)與直線y=k(x+1)有2個(gè)公共點(diǎn),則k的取值范圍是( 。
A.(0,$\frac{1}{2}$]B.($\frac{1}{4}$,$\frac{3}{4}$]C.[$\frac{1}{2}$,$\frac{3}{4}$)D.[$\frac{1}{4}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn)到它的漸近線距離為$\sqrt{3}$,直線x=-$\frac{{a}^{2}}{c}$(c為半焦距)與拋物線y2=2x的準(zhǔn)線重合,則該雙曲線的離心率為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=-x2+|x-a|.(a∈R)
(1)當(dāng)a=1時(shí),求函數(shù)最大值.
(2)當(dāng)a>0時(shí),討論函數(shù)單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案