3.如圖,三棱錐P-ABC中,△PAB是正三角形,E是AB的中點(diǎn),AB⊥BC,平面PAB⊥平面ABC.若AB=2,BC=$\sqrt{2}$,則點(diǎn)A到平面PEC的距離是$\frac{\sqrt{6}}{3}$.

分析 利用VA-PEC=VP-AEC,即可求出點(diǎn)A到平面PEC的距離.

解答 解:設(shè)點(diǎn)A到平面PEC的距離是h,則
由題意,PE⊥平面ABC,PE=$\sqrt{3}$,EC=$\sqrt{3}$,
∴S△PEC=$\frac{1}{2}•\sqrt{3}•\sqrt{3}$=$\frac{3}{2}$,
∵VP-AEC=$\frac{1}{3}•\frac{1}{2}•1•\sqrt{2}•\sqrt{3}$=$\frac{\sqrt{6}}{6}$,
∴VA-PEC=$\frac{1}{3}•\frac{3}{2}•h$=$\frac{\sqrt{6}}{6}$,
∴h=$\frac{\sqrt{6}}{3}$.
故答案為:$\frac{\sqrt{6}}{3}$.

點(diǎn)評 本題考查求點(diǎn)A到平面PEC的距離,考查三棱錐體積的計(jì)算,正確求體積是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標(biāo)系xoy中,已知直線l:ax+y+3=0,點(diǎn)A(0,2),若直線l上存在點(diǎn)M,滿足|MA|2+|MO|2=10,則實(shí)數(shù)a的取值范圍是{a|$a≤-\sqrt{3}$或$a≥\sqrt{3}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知△ABC中,∠ABC=90°,AB=1.AC=2,若△ABC內(nèi)部的一點(diǎn)P滿足$\frac{{S}_{△PAB}}{PA•PB}$=$\frac{{S}_{△PBC}}{PB•PC}=\frac{{S}_{△PAC}}{PA•PC}$,則PA+PB+PC的值為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若曲線x2-4x+y2-2y+4=0(y≥1)與直線y=k(x+1)有2個公共點(diǎn),則k的取值范圍是( 。
A.(0,$\frac{1}{2}$]B.($\frac{1}{4}$,$\frac{3}{4}$]C.[$\frac{1}{2}$,$\frac{3}{4}$)D.[$\frac{1}{4}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知兩等差數(shù)列{an}和{bn},前n項(xiàng)和分別為Sn,Tn,若$\frac{{a}_{n}}{_{n}}=\frac{4n+2}{2n-5}$,則$\frac{{S}_{19}}{{T}_{19}}$=$\frac{14}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個焦點(diǎn)到它的漸近線距離為$\sqrt{3}$,直線x=-$\frac{{a}^{2}}{c}$(c為半焦距)與拋物線y2=2x的準(zhǔn)線重合,則該雙曲線的離心率為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)$\left\{{\begin{array}{l}{{x^2}+1,x≤0}\\{\sqrt{x},x>0}\end{array}}\right.$,則f(f(-2))=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求值:sin$\frac{π}{3}$tan$\frac{π}{3}$+tan$\frac{π}{6}$cos$\frac{π}{6}$-tan$\frac{π}{4}$cos$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知定點(diǎn)A(2,0),動點(diǎn)M,N在y軸上滑動,且|MN|=4.
(1)當(dāng)M,N運(yùn)動時(shí),求△AMN外接圓的圓心C的軌跡方程;
(2)記∠MAN=θ,當(dāng)θ最大時(shí),求此時(shí)圓C的方程.

查看答案和解析>>

同步練習(xí)冊答案