【題目】紅鈴蟲是棉花的主要害蟲之一,能對農(nóng)作物造成嚴(yán)重傷害,每只紅鈴蟲的平均產(chǎn)卵數(shù)y和平均溫度x有關(guān),現(xiàn)收集了以往某地的7組數(shù)據(jù),得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.(表中)
平均溫度 | 21 | 23 | 25 | 27 | 29 | 32 | 35 | ||
平均產(chǎn)卵數(shù)/個(gè) | 7 | 11 | 21 | 24 | 66 | 115 | 325 | ||
27.429 | 81.286 | 3.612 | 40.182 | 147.714 | |||||
(1)根據(jù)散點(diǎn)圖判斷,與(其中自然對數(shù)的底數(shù))哪一個(gè)更適宜作為平均產(chǎn)卵數(shù)y關(guān)于平均溫度x的回歸方程類型?(給出判斷即可,不必說明理由)并由判斷結(jié)果及表中數(shù)據(jù),求出y關(guān)于x的回歸方程.(計(jì)算結(jié)果精確到小數(shù)點(diǎn)后第三位)
(2)根據(jù)以往統(tǒng)計(jì),該地每年平均溫度達(dá)到28℃以上時(shí)紅鈴蟲會造成嚴(yán)重傷害,需要人工防治,其他情況均不需要人工防治記該地每年平均溫度達(dá)到28℃以上的概率為.
①記該地今后5年中,恰好需要3次人工防治的概率為,求的最大值,并求出相應(yīng)的概率p.
②當(dāng)取最大值時(shí),記該地今后5年中,需要人工防治的次數(shù)為X,求X的數(shù)學(xué)期望和方差.
附:線性回歸方程系數(shù)公式.
【答案】(1)更適宜,;(2)①,;②,
【解析】
(1)根據(jù)散點(diǎn)圖選擇合適函數(shù)模擬,利用變量,構(gòu)造線性回歸方程,利用已知量求解出關(guān)于的線性回歸方程,即可求解出y關(guān)于x的回歸方程;
(2)①先表示出,然后根據(jù)分析出的最大值以及的值;
②根據(jù)的值以及二項(xiàng)分布的均值與方差的計(jì)算方法求解出結(jié)果即可.
解:(1)根據(jù)散點(diǎn)圖可以判斷,更適宜作為平均產(chǎn)卵數(shù)
y關(guān)于平均溫度x的回歸方程類型;
對兩邊取自然對數(shù),得;
令,得;
因?yàn)?/span>,
;
所以z關(guān)于x的回歸方程為;
所以y關(guān)于x的回歸方程為;
(2)(i)由,
得,
因?yàn)?/span>,令,得,解得;
所以在上單調(diào)遞增,在上單調(diào)遞減,
所以有唯一的極大值為,也是最大值;
所以當(dāng)時(shí),;
(ii)由(i)知,當(dāng)取最大值時(shí),,所以,
所以X的數(shù)學(xué)期望為,
方差為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在上的函數(shù),若函數(shù)滿足:①在區(qū)間上單調(diào)遞減;②存在常數(shù)p,使其值域?yàn)?/span>,則稱函數(shù)為的“漸近函數(shù)”;
(1)證明:函數(shù)是函數(shù)的漸近函數(shù),并求此時(shí)實(shí)數(shù)p的值;
(2)若函數(shù),證明:當(dāng)時(shí),不是的漸近函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)a(x﹣1)2+(x﹣2)ex(a>0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若關(guān)于x的方程f(x)a=0存在3個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系xOy的原點(diǎn)為極坐標(biāo)系的極點(diǎn),x軸的正半軸為極軸.已知曲線的極坐標(biāo)方程為,P是上一動(dòng)點(diǎn),,Q的軌跡為.
(1)求曲線的極坐標(biāo)方程,并化為直角坐標(biāo)方程,
(2)若點(diǎn),直線l的參數(shù)方程為(t為參數(shù)),直線l與曲線的交點(diǎn)為A,B,當(dāng)取最小值時(shí),求直線l的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)打算處理一批產(chǎn)品,這些產(chǎn)品每箱100件,以箱為單位銷售.已知這批產(chǎn)品中每箱出現(xiàn)的廢品率只有或者兩種可能,兩種可能對應(yīng)的概率均為0.5.假設(shè)該產(chǎn)品正品每件市場價(jià)格為100元,廢品不值錢.現(xiàn)處理價(jià)格為每箱8400元,遇到廢品不予更換.以一箱產(chǎn)品中正品的價(jià)格期望值作為決策依據(jù).
(1)在不開箱檢驗(yàn)的情況下,判斷是否可以購買;
(2)現(xiàn)允許開箱,有放回地隨機(jī)從一箱中抽取2件產(chǎn)品進(jìn)行檢驗(yàn).
①若此箱出現(xiàn)的廢品率為,記抽到的廢品數(shù)為,求的分布列和數(shù)學(xué)期望;
②若已發(fā)現(xiàn)在抽取檢驗(yàn)的2件產(chǎn)品中,其中恰有一件是廢品,判斷是否可以購買.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,短軸的兩個(gè)端點(diǎn)分別為.
(Ⅰ)若為等邊三角形,求橢圓的方程;
(Ⅱ)若橢圓的短軸長為,過點(diǎn)的直線與橢圓相交于兩點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2)若與交于兩點(diǎn),點(diǎn)的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列: 滿足: , 或1().對任意,都存在,使得.,其中 且兩兩不相等.
(I)若.寫出下列三個(gè)數(shù)列中所有符合題目條件的數(shù)列的序號;
①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2
(Ⅱ)記.若,證明: ;
(Ⅲ)若,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com