7.?dāng)?shù)列{an}中,a1=3,an+1=2an+2.
(I)求證:{an+2}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(II)設(shè)bn=$\frac{n}{{a}_{n}+2}$,求Sn=b1+b2+…+bn,并證明:?n∈N*,$\frac{1}{5}$≤Sn<$\frac{4}{5}$.

分析 (Ⅰ)把原數(shù)列遞推式變形,可得{an+2}是等比數(shù)列,求出其通項公式后可求數(shù)列{an}的通項公式;
(Ⅱ)把數(shù)列{an}的通項公式代入${b_n}=\frac{n}{{{a_n}+2}}$,整理后利用錯位相減法求Sn=b1+b2+…+bn,然后放縮得答案.

解答 (Ⅰ)證明:由an+1=2an+2,得an+1+2=2(an+2),
∵a1+2=5≠0,∴$\frac{{a}_{n+1}+2}{{a}_{n}+2}=2$,
∴{an+2}是首項為5,公比為2的等比數(shù)列,
則${a}_{n}+2=5•{2}^{n-1}$,
∴${a}_{n}=5•{2}^{n-1}-2$;
(Ⅱ)解:${b_n}=\frac{n}{{5×{2^{n-1}}}}$,
∴${S_n}=\frac{1}{5}({\frac{1}{2^0}+\frac{2}{2^1}+\frac{3}{2^2}+…+\frac{n}{{{2^{n-1}}}}})$------①
$\frac{1}{2}{S_n}=\frac{1}{5}({\frac{1}{2^1}+\frac{2}{2^2}+\frac{3}{2^3}+…+\frac{n}{2^n}})$------②
①-②得:${S_n}=\frac{2}{5}({\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+…+\frac{1}{{{2^{n-1}}}}-\frac{n}{{{2^{n-1}}}}})=\frac{2}{5}({\frac{{1-\frac{1}{2^n}}}{{1-\frac{1}{2}}}-\frac{n}{2^n}})=\frac{2}{5}({2-\frac{n+2}{2^n}})$.
∴${S_n}=\frac{4}{5}-\frac{1}{5}×\frac{n+2}{{{2^{n-1}}}}<\frac{4}{5}$;
∵${S_{n+1}}-{S_n}=\frac{2}{5}({\frac{n+2}{2^n}-\frac{n+3}{{{2^{n+1}}}}})=\frac{2}{5}×\frac{n+1}{{{2^{n+1}}}}>0$,
∴{Sn}單調(diào)遞增,則${S_n}≥{S_1}=\frac{1}{5}$,
∴$?n∈{N^*},\frac{1}{5}≤{S_n}<\frac{4}{5}$.

點評 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,訓(xùn)練了錯位相減法求數(shù)列的和,考查放縮法證明數(shù)列不等式,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知m,n,p表示不重合的三條直線,α,β,γ表示不重合的三個平面.下列說法正確的是①③.(寫出所有正確命題的序號).
①若m⊥p,m∥n,則n⊥p;
②若m∥β,n∥β,m?α,n?α,則α∥β;
③若α⊥γ,β⊥γ,α∩β=m,則m⊥γ;
④若α∥β,m?α,n?β,則m∥n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|kx-1|+|kx-2k|,g(x)=x+1.
(1)當(dāng)k=1時,求不等式f(x)>g(x)的解集;
(2)若存在x0∈R,使得不等式f(x0)≤2成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x+3|-|x+a|是R上的奇函數(shù).
(1)求實數(shù)a的值; 
(2)畫出函數(shù)f(x)的圖象;  
(3)寫出函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,過右焦點F且斜率為k(k>0)的直線與橢圓C相交于A,B兩點.若$\overrightarrow{AF}=2\overrightarrow{FB}$,則k=$\frac{\sqrt{23}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.為了調(diào)查某高中學(xué)生每天的睡眠時間,現(xiàn)隨機(jī)對20名男生和20名女生進(jìn)行問卷調(diào)查,結(jié)果如下:
睡眠時間(小時)[4,5)[5,6)[6,7)[7,8)[8,9)
人數(shù)15653
男生
睡眠時間(小時)[4,5)[5,6)[6,7)[7,8)[8,9)
人數(shù)24842
女生
(I)現(xiàn)把睡眠時間不足5小時的定義為“嚴(yán)重睡眠不足”,從睡眠時間不足6小時的女生中隨機(jī)抽取3人,求此3人中恰有一人為“嚴(yán)重睡眠不足”的概率;
(II)完成下面2×2列聯(lián)表,并回答是否有90%的把握認(rèn)為“睡眠時間與性別有關(guān)”?
睡眠時間少于7小時睡眠時間不少于7小時合計
男生
女生
合計
(${x}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項和Sn=2n+1-2,數(shù)列{bn}滿足bn=n•an
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,a,b,c分別是角A、B、C的對邊,且a2+c2-b2+ac=0.
(1)求角B的大小;
(2)若$b=\sqrt{13},a+c=4$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知sinα=-$\frac{3}{5}$,α∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(Ⅰ)求sin2α的值;
(Ⅱ)求tan($\frac{3π}{4}$-α)的值.

查看答案和解析>>

同步練習(xí)冊答案