7.已知命題p:?x0∈R,使sinx0=$\frac{{\sqrt{5}}}{2}$;命題q:?x∈(0,$\frac{π}{2}$),x>sinx,則下列判斷正確的是(  )
A.p為真B.¬q為假C.p∧q為真D.p∨q為假

分析 根據(jù)特稱命題和全稱命題,分別判斷命題p,q的真假,結(jié)合復合命題真假關(guān)系進行判斷即可.

解答 解:∵sinx0=$\frac{{\sqrt{5}}}{2}$>1,∴:?x0∈R,使sinx0=$\frac{{\sqrt{5}}}{2}$為假命題,故p是假命題,
設f(x)=x-sinx,則f′(x)=1-cosx≥0,
則函數(shù)f(x)為增函數(shù),即
∵當x>0時,f(x)>f(0),
即x-sinx>0,則x>sinx,即$?x∈(0,\frac{π}{2})$,x>sinx成立,故q是真命題,
則¬q為假,
故選:B

點評 本題主要考查復合命題真假之間的關(guān)系的應用,根據(jù)含有量詞的命題的定義判斷p,q的真假是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.對于函數(shù)f(x)=a-$\frac{2}{{{2^x}+1}}$(a∈R)
(Ⅰ)探索函數(shù)f(x)的單調(diào)性;
(Ⅱ)是否存在實數(shù)a,使函數(shù)f(x)為奇函數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.一個正方體的平面展開圖及該正方體的直觀圖如圖所示,在正方體中,設BC的中點為M,GH的中點為N.
(1)請將字母F,G,H標記在正方體相應的頂點處(不需要說明理由);
(2)求證:直線MN∥平面BDH;
(3)求二面角B-DH-C的平面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在極坐標系中,直線θ=α與ρcos(θ-α)=1位置關(guān)系( 。
A.平行B.垂直C.相交但不垂直D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.一圖形的投影是一條線段,這個圖形不可能是( 。
A.線段B.直線C.D.梯形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.某空間幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$2\sqrt{3}$B.$4\sqrt{3}$C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.正四棱柱ABCD-A1B1C1D1中,AB=$\sqrt{2}$,AA1=2,設四棱柱的外接球的球心為O,動點P在正方形ABCD的邊長,射線OP交球O的表面點M,現(xiàn)點P從點A出發(fā),沿著A→B→C→D→A運動一次,則點M經(jīng)過的路徑長為$\frac{4\sqrt{2}}{3}π$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.己知向量$\overrightarrow{a}$=($\sqrt{3}$sinx,sinx),$\overrightarrow$=(cosx,sinx).
(Ⅰ)若|$\overrightarrow{a}$-$\overrightarrow$|=2且x∈[$\frac{π}{2}$,π],求x的值
(Ⅱ)設函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$,若方程f(x)-k=0在x∈[$\frac{π}{2}$,π]上恰有兩個相異的實根α、β,
(1)寫出實數(shù)k的取值范圍(不必說明理由)
(2)求α+β的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列四個命題:
①樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;
②某校高三一級部和二級部的人數(shù)分別是m、n,本次期末考試兩級部數(shù)學平均分分別是a、b,則這兩個級部的數(shù)學平均分為$\frac{na}{m}$+$\frac{mb}{n}$;
③某中學采用系統(tǒng)抽樣方法,從該校高一年級全體800名學生中抽50名學生做牙齒健康檢查,現(xiàn)將800名學生從001到800進行編號,已知從497--512這16個數(shù)中取得的學生編號是503,則初始在第1小組00l~016中隨機抽到的學生編號是007.
其中命題正確的個數(shù)是( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

同步練習冊答案