12.已知函數(shù)f(x)=$\sqrt{2}$cos(x-$\frac{π}{4}$),若f(θ)=$\frac{2}{3}$,θ∈(0,π),求cos2θ的值.

分析 利用函數(shù)的解析式,結(jié)合兩角和與差的三角函數(shù)化簡(jiǎn)表達(dá)式,利用二倍角公式求解即可.

解答 解:函數(shù)f(x)=$\sqrt{2}$cos(x-$\frac{π}{4}$),若f(θ)=$\frac{2}{3}$,θ∈(0,π),
可得:$\sqrt{2}$cos(θ-$\frac{π}{4}$)=$\frac{2}{3}$,
cosθ+sinθ=$\frac{2}{3}$,2sinθcosθ+1=$\frac{4}{9}$,
2sinθcosθ=-$\frac{5}{9}$,∴θ∈($\frac{π}{2}$,$\frac{3π}{4}$).2θ∈(π,$\frac{3π}{2}$).即:sin2θ=-$\frac{5}{9}$,
cos2θ=-$\sqrt{1-si{n}^{2}2θ}$=-$\sqrt{1-(-\frac{5}{9})^{2}}$=-$\frac{2\sqrt{14}}{9}$.

點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)求值,二倍角公式的應(yīng)用,判斷角的范圍是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,設(shè)內(nèi)角A、B、C的對(duì)邊分別為a、b、c,向量$\overrightarrow{m}$=(cosA+$\sqrt{2}$,sinA),向量$\overrightarrow{n}$=(-sinA,cosA),若|$\overrightarrow{m}$+$\overrightarrow{n}$|=2.
(1)求角A的大小;
(2)若b=4$\sqrt{2}$,且c=$\sqrt{2}$a,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.點(diǎn)F為雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a,b>0)的焦點(diǎn),過(guò)點(diǎn)F的直線與雙曲線的一條漸近線垂直且交于點(diǎn)A,與另一條漸近線交于點(diǎn)B.若3$\overrightarrow{AF}$+$\overrightarrow{BF}$=0,則雙曲線C的離心率是( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.曲線$\left\{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=t-\frac{1}{t}}\end{array}\right.$(t為參數(shù))的普通方程為$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知滿足方程$\left\{\begin{array}{l}{|z-1|=|z+i|}\\{|z-2|=a}\end{array}\right.$的復(fù)數(shù)z有且只有2個(gè),則實(shí)數(shù)a的取值范圍是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.用反正弦函數(shù)值的形式表示各式中的x:
(1)sinx=$\frac{\sqrt{3}}{5}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(2)sinx=-$\frac{1}{4}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(3)sinx=$\frac{1}{7}$,x∈[-$\frac{π}{2}$,π];
(4)sinx=$\frac{\sqrt{3}}{3}$,x∈[0,π];
(5)sinx=-$\frac{2}{5}$,x∈(π,$\frac{3}{2}$π);
 (6)sinx=-$\frac{2}{5}$,x∈(π,2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}中,a1=2,當(dāng)n≥2時(shí),an-n=an-1+$\frac{2}{\sqrt{n}+\sqrt{n-1}}$,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是(  )
A.y=exB.y=lnx2C.y=$\sqrt{x}$D.y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知整數(shù)x,y滿足不等式$\left\{\begin{array}{l}y≥x\\ x+y≥4\\ x-2y+8≥0\end{array}\right.$,則2x+y的最大值是24;x2+y2的最小值是8.

查看答案和解析>>

同步練習(xí)冊(cè)答案