【題目】已知某射擊運(yùn)動(dòng)員每次擊中目標(biāo)的概率都是,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員射擊次至多擊中次的概率:先由計(jì)算器產(chǎn)生之間取整數(shù)值的隨機(jī)數(shù),指定表示沒有擊中目標(biāo),、、、、表示擊中目標(biāo),因?yàn)樯鋼?/span>次,故以每個(gè)隨機(jī)數(shù)為一組,代表射擊次的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下組隨機(jī)數(shù):

5727 0293 7140 9857 0347 4373 8636 9647 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 6710 4281

據(jù)此估計(jì),射擊運(yùn)動(dòng)員射擊4次至多擊中3次的概率為(

A.B.C.D.

【答案】D

【解析】

由題意知模擬射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生組隨機(jī)數(shù),在組隨機(jī)數(shù)中表示射擊4次至多擊中3次,可以通過列舉得到共多少組隨機(jī)數(shù),根據(jù)概率公式即可得到結(jié)果.

由題意知模擬射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生組隨機(jī)數(shù),

組隨機(jī)數(shù)中表示射擊4次至多擊中3次的有:

0293 7140 0347 1417 0371 2616

8045 6011 3661 6710 4281組隨機(jī)數(shù),

射擊4次至多擊中3次的概率為.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求圓的普通方程和直線的直角坐標(biāo)方程;

(2)若直線與圓交于兩點(diǎn),是圓上不同于兩點(diǎn)的動(dòng)點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)若,求函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的不等式對(duì)任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;

3)若函數(shù)個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,,當(dāng)時(shí),.數(shù)列滿足.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的通項(xiàng)公式;

3)若數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是以為直徑的半圓上異于點(diǎn)的點(diǎn),矩形所在的平面垂直于該半圓所在平面,且

(Ⅰ)求證:;

(Ⅱ)設(shè)平面與半圓弧的另一個(gè)交點(diǎn)為,

求證://;

,求三棱錐E-ADF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知多面體中,為菱形,平面,,.

(1)求證:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)從某學(xué)校高二年級(jí)男生中隨機(jī)抽取名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于之間,將測(cè)量結(jié)果按如下方式分成組:第,第,,第,下圖是按上述分組方法得到的頻率分布直方圖.

1)估計(jì)這名男生身高的中位數(shù)和平均數(shù);

2)求這名男生當(dāng)中身高不低于的人數(shù),若在這名身高不低于的男生中任意抽取人,求這人身高之差不大于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為此函數(shù)的定義域)同時(shí)滿足下列兩個(gè)條件:函數(shù)內(nèi)單調(diào)遞增或單調(diào)遞減;如果存在區(qū)間,使函數(shù)在區(qū)間上的值域?yàn)?/span>,那么稱,為閉函數(shù);

請(qǐng)解答以下問題:

(1) 求閉函數(shù)符合條件的區(qū)間;

(2) 判斷函數(shù)是否為閉函數(shù)?并說明理由;

(3)是閉函數(shù),求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)滿足:,的最小值為1,且在軸上的截距為4.

(1)求此二次函數(shù)的解析式;

(2)若存在區(qū)間,使得函數(shù)的定義域和值域都是區(qū)間,則稱區(qū)間為函數(shù)不變區(qū)間”.試求函數(shù)的不變區(qū)間;

(3)若對(duì)于任意的,總存在,使得,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案