分析 (1)取AB的中點(diǎn)G,AC的中點(diǎn)F,根據(jù)面面平行的性質(zhì)定理即可證明EF∥平面BCD.
(2)證明BC⊥平面ABDE,利用棱錐的體積公式,求出四棱錐C-ABDE的體積.
解答 解:(1)取AB的中點(diǎn)G,AC的中點(diǎn)F,連接EG,EF,F(xiàn)G,
則EG∥BD,DG∥BC,
則平面EFG∥平面BCD,
∵EF?平面EFG,
∴EF∥平面BCD,
即F是AC的中點(diǎn)時(shí),滿(mǎn)足EF∥平面BCD.
(2)∵平面ABDE⊥平面ABC,平面ABDE∩平面ABC=AB,AB⊥BC,
∴BC⊥平面ABDE,
∵四邊形ABDE為等腰梯形,DE∥AB,高h(yuǎn)=1,AB=BC=2DE=2,
∴四棱錐C-ABDE的體積V=$\frac{1}{3}×\frac{1}{2}×(1+2)×1×2$=1.
點(diǎn)評(píng) 本題主要考查空間線面平行的判定以及四棱錐C-ABDE的體積的求解,正確運(yùn)用線面平行的判定是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∅ | B. | a>0,a≠1 | C. | 0<a≤2,a≠1 | D. | 1<a≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=±$\frac{\sqrt{6}}{3}$x | B. | y=±$\frac{\sqrt{10}}{2}$x | C. | y=±$\frac{\sqrt{10}}{5}$x | D. | y=±$\frac{\sqrt{6}}{2}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com