10.設(shè)復(fù)數(shù)z滿足z(1+i)=i(i為虛數(shù)單位),則|z|=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{2}$

分析 先求出復(fù)數(shù)z,然后利用求模公式可得答案.

解答 解:由z(1+i)=i得z=$\frac{i}{1+i}$=$\frac{i(1-i)}{(1+i)(1-i)}$=$\frac{1}{2}$+$\frac{1}{2}$i,
則則|z|=$\sqrt{(\frac{1}{2})^{2}+(\frac{1}{2})^{2}}$=$\frac{\sqrt{2}}{2}$,
故選:B

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的運(yùn)算、復(fù)數(shù)求模,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.過(guò)點(diǎn)P(-1,0)作直線與拋物線y2=8x相交于A,B兩點(diǎn),且2|PA|=|AB|,則點(diǎn)B到該拋物線焦點(diǎn)的距離為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,拋物線E:y2=2px(p>0)與圓O:x2+y2=8相交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為2.過(guò)劣弧AB上動(dòng)點(diǎn)P(x0,y0)作圓O的切線交拋物線E于C,D兩點(diǎn),分別以C,D為切點(diǎn)作拋物線E的切線l1,l2,l1與l2相交于點(diǎn)M.
(Ⅰ)求p的值;
(Ⅱ)求動(dòng)點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖的幾何體中,AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB=2,F(xiàn)為CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)求A到平面BCE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.曲線$y={(\frac{1}{3})^x}$與$y={x^{\frac{1}{2}}}$的交點(diǎn)橫坐標(biāo)所在區(qū)間為( 。
A.$(0,\;\frac{1}{3})$B.$(\frac{1}{3},\;\frac{1}{2})$C.$(\frac{1}{2},\;\frac{2}{3})$D.$(\frac{2}{3},\;1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知點(diǎn)(x,y)滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤2a}\\{x-y≤a}\end{array}\right.$(其中a為正實(shí)數(shù)),則z=2x-y的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合A={0,1,2,3,4},B={x|x2-2x>0},則A∩B=(  )
A.(2,4]B.[2,4]C.{0,3,4}D.{3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)F為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦點(diǎn),若OF的垂直平分線與漸近線在第一象限內(nèi)的交點(diǎn)到另一條漸近線的距離為$\frac{1}{2}|OF|$,則雙曲線的離心率為( 。
A.$2\sqrt{2}$B.$\frac{{2\sqrt{3}}}{3}$C.$2\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若數(shù)列{an}的前n項(xiàng)和Sn=n2-10n(n=1,2,3,…),
(1)求a1,a2的值;
(2)求此數(shù)列的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案