【題目】某正弦交流電的電壓v(單位V)隨時間t(單位:s)變化的函數(shù)關(guān)系是v=120 sin(100πt﹣ ),t∈[0,+∞).
(1)求該正弦交流電電壓v的周期、頻率、振幅;
(2)若加在霓虹燈管兩端電壓大于84V時燈管才發(fā)光,求在半個周期內(nèi)霓虹燈管點亮的時間?( 取 ≈1.4)

【答案】
(1)解:周期 ,頻率 ,振幅
(2)解:由

結(jié)合正弦圖象,取半個周期有 解得

所以半個周期內(nèi)霓虹燈管點亮的時間為 (s)


【解析】(1)根據(jù)v=120 sin(100πt﹣ ),t∈[0,+∞),求該正弦交流電電壓v的周期、頻率、振幅;(2)由 ,結(jié)合正弦圖象,取半個周期,即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場在一部向下運行的手扶電梯終點的正上方豎直懸掛一幅廣告畫.如圖,該電梯的高米,它所占水平地面的長米.該廣告畫最高點到地面的距離為米,最低點到地面距離米.假設(shè)某人眼睛到腳底的距離米,他豎直站在此電梯上觀看視角為.

(Ⅰ設(shè)此人到直線的距離為米,試用含的表達式表示;

(Ⅱ此人到直線的距離為多少米時,視角最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體是由棱臺 和棱錐拼接而成的組合體,其底面四邊形是邊長為 的菱形,且 , 平面 ,

1)求證:平面 平面 ;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ex+4sin3x+1,x∈(﹣1,1),若f(1﹣a)+f(1﹣a2)>2成立,則實數(shù)a的取值范圍是(
A.(﹣2,1)
B.(0,1)
C.
D.(﹣∞,﹣2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xoy中,以O(shè)為極點,x軸非負半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρsin2θ=4cosθ,直線l的參數(shù)方程為: (t為參數(shù)),兩曲線相交于M,N兩點.
(1)寫出曲線C的直角坐標方程和直線l的普通方程;
(2)若P(﹣2,﹣4),求|PM|+|PN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)當時,求函數(shù)的最大值;

(2)若,且對任意的 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4sin2 + )sinx+(cosx+sinx)(cosx﹣sinx)﹣1.
(1)化簡f(x);
(2)常數(shù)ω>0,若函數(shù)y=f(ωx)在區(qū)間 上是增函數(shù),求ω的取值范圍;
(3)若函數(shù)g(x)= 的最大值為2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= cos4x+2sinxcosx﹣ sin4x.
(1)當x∈[0, ]時,求f(x)的最大值、最小值以及取得最值時的x值;
(2)設(shè)g(x)=3﹣2m+mcos(2x﹣ )(m>0),若對于任意x1∈[0, ],都存在x2∈[0, ],使得f(x1)=g(x2)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中, 平面, 的中點, , .

(1)求證: ;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案