精英家教網 > 高中數學 > 題目詳情
17.已知橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$,過上頂點和左焦點的直線的傾斜角為$\frac{π}{6}$,直線l過點E(-1,0)且與橢圓C交于A,B兩點.
(1)求橢圓C的標準方程;
(2)△AOB的面積是否有最大值?若有,求出此最大值;若沒有,請說明理由.

分析 (1)由橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$,過上頂點和左焦點的直線的傾斜角為$\frac{π}{6}$,列出方程組,求出a,b,由此能求出橢圓C的標準方程.
(2)設直線l的方程為x=my-1或y=0(舍),聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{x=my-1}\end{array}\right.$,得(m2+4)y2-2my-3=0,由此利用根的判別式、韋達定理、弦長公式、三角形面積公式、換元法、函數性質,結合已知條件能求出△AOB的面積的最大值.

解答 解:(1)∵橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$,過上頂點和左焦點的直線的傾斜角為$\frac{π}{6}$,
∴$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{\frac{c}=\frac{\sqrt{3}}{3}}\end{array}\right.$,再由a2=b2+c2,解得a=2,b=1,
∴橢圓C的標準方程為$\frac{{x}^{2}}{4}+{y}^{2}=1$.
(2)∵直線l過點E(-1,0),∴設直線l的方程為x=my-1或y=0(舍),
聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{x=my-1}\end{array}\right.$,得(m2+4)y2-2my-3=0,
△=4m2+12(m2+4)>0,
設A(x1,y1),B(x2,y2),其中y1>y2
解得${y}_{1}+{y}_{2}=\frac{2m}{{m}^{2}+4}$,${y}_{1}{y}_{2}=\frac{-3}{{m}^{2}+4}$,
∴|y2-y1|=$\sqrt{(1+\frac{1}{{m}^{2}})[(\frac{2m}{{m}^{2}+4})^{2}+4×\frac{3}{{m}^{2}+4}]}$=$\frac{4\sqrt{{m}^{2}+3}}{{m}^{2}+4}$,
則S△AOB=$\frac{1}{2}$|OE|•|y2-y1|=$\frac{2\sqrt{{m}^{2}+3}}{{m}^{2}+4}$=$\frac{2}{\sqrt{{m}^{2}+3}+\frac{1}{\sqrt{{m}^{2}+3}}}$,
設t=$\sqrt{{m}^{2}+3}$,則g(t)=t+$\frac{1}{t}$,t$≥\sqrt{3}$,
則g(t)在區(qū)間[$\sqrt{3}$,+∞)上是增函數,∴g(t)≥g($\sqrt{3}$)=$\sqrt{3}+\frac{1}{\sqrt{3}}$=$\frac{4\sqrt{3}}{3}$.
∴S△AOB≤$\frac{\sqrt{3}}{2}$.
當且僅當m=0時,取等號,即(S△AOBmax=$\frac{\sqrt{3}}{2}$.
∴△AOB的面積有最大值,最大值為$\frac{\sqrt{3}}{2}$.

點評 本題考查橢圓標準方程的求法,考查三角形面積是否有最大值的判斷與求法,是中檔題,解題時要認真審題,注意根的判別式、韋達定理、弦長公式、三角形面積公式、換元法、函數性質的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

7.在直角坐標系xOy中,角α的頂點為坐標原點,始邊在x軸的正半軸上.
(1)當角α的終邊為射線l:y=2$\sqrt{2}$x (x≥0)時,求cos(α+$\frac{π}{6}$)的值;
(2)已知$\frac{π}{6}$≤α≤$\frac{3π}{4}$,試求$\frac{3}{2}$sin2α+$\sqrt{3}$cos2α-$\frac{\sqrt{3}}{2}$的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.設不等式組$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,表示的區(qū)域為M,若直線l:y=k(x+2)上存在區(qū)域M內的點,則k的取值范圍是$[\frac{2}{7},\frac{22}{15}]$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.cos$\frac{29π}{6}$的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.在平面直角坐標系xOy中,圓C:x2+y2=2,Q(3,0),圓外一動點M到圓C的切線長與|MQ|的比值為$\sqrt{2}$
(1)求動點M的軌跡方程;
(2)若斜率為k且過點P(0,2)的直線l和動點M的軌跡和交于A,B兩點,是否存在常數k,使$\overrightarrow{OA}+\overrightarrow{OB}$與$\overrightarrow{PQ}$共線?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.過(0,$\sqrt{2}$)斜率為k的直線l與橢圓$\frac{x^2}{2}$+y2=1交于不同兩點P、Q.
(1)求k取值范圍;
(2)是否存在k使得向量$\overrightarrow{OP}$•$\overrightarrow{OQ}$=1?若存在,求出k的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.命題:?x∈R,ln(ex-1)<0的否定是( 。
A.?x∈R,ln(ex-1)>0B.?x∈R,ln(ex-1)≥0C.?x∈R,ln(ex-1)<0D.?x∈R,ln(ex-1)≥0

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.若函數f(x)=$\left\{\begin{array}{l}({1-a})x+2a,x<1\\ lnx,x≥1\end{array}$的值域為R,則a的取值范圍是-1≤a<1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.設P是圓x2+y2=4上的任意一點,點D是點P在x軸上的投影,動點M滿足$\sqrt{3}$$\overrightarrow{PD}$=2$\overrightarrow{MD}$.
(1)求動點M的軌跡E的方程;
(2)設點F(-1,0),若直線y=kx+m與軌跡E相切于點Q,且與直線x=-4相交于點R,求證:以QR為直徑的圓經過定點F.

查看答案和解析>>

同步練習冊答案