7.設(shè)P是圓x2+y2=4上的任意一點,點D是點P在x軸上的投影,動點M滿足$\sqrt{3}$$\overrightarrow{PD}$=2$\overrightarrow{MD}$.
(1)求動點M的軌跡E的方程;
(2)設(shè)點F(-1,0),若直線y=kx+m與軌跡E相切于點Q,且與直線x=-4相交于點R,求證:以QR為直徑的圓經(jīng)過定點F.

分析 (1)求出M,P坐標(biāo)之間的關(guān)系,利用代入法求動點M的軌跡E的方程;
(2)證明$\overrightarrow{QF}$•$\overrightarrow{RF}$=0,即可證明結(jié)論.

解答 (1)解:設(shè)M的坐標(biāo)為(x,y),P的坐標(biāo)為(xP,yP),
由已知得xP=x,yP=$\frac{2}{\sqrt{3}}$y,
∵點P在圓上,∴x2+($\frac{2}{\sqrt{3}}$y)2=4,即$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1,
∴點M的軌跡方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.(4分)
(2)證明:由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$得(4k2+3)x2+8kmx+4m2-12=0.
如圖,設(shè)點Q的坐標(biāo)為(x0,y0),依題意m≠0,
由△=0可得4k2+3=m2,(6分)
此時x0=-$\frac{4k}{m}$,y0=$\frac{3}{m}$,
∴Q(-$\frac{4k}{m}$,$\frac{3}{m}$),
由$\left\{\begin{array}{l}{y=kx+m}\\{x=-4}\end{array}\right.$解得y=-4k+m,∴R(-4,-4k+m) (9分)
由F(-1,0),$\overrightarrow{QF}$=($\frac{4k}{m}$-1,-$\frac{3}{m}$),$\overrightarrow{RF}$=(3,4k-m)
∴$\overrightarrow{QF}$•$\overrightarrow{RF}$=3($\frac{4k}{m}$-1)-$\frac{3}{m}$•(4k-m)=0,
∴QF⊥RF.
∴以QR為直徑的圓過定點F.(12分)

點評 本題考查了圓錐曲線的定義與性質(zhì)及向量的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$,過上頂點和左焦點的直線的傾斜角為$\frac{π}{6}$,直線l過點E(-1,0)且與橢圓C交于A,B兩點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)△AOB的面積是否有最大值?若有,求出此最大值;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.我們知道,如果集合A⊆U,那么U的子集A的補集為∁UA={x|x∈U,且x∉A},類似地對于集合A、B,我們把集合{x|x∈A且x∉B}叫做A與B的差集,記作A-B.例如A={1,2,3,5,8},B={4,5,6,7,8}.則A-B={1,2,3}.B-A={4,6,7}.
據(jù)此,回答以下問題:
(1)補集與差集有什么異同點?
(2)若U是高一(1)班全體同學(xué)組成的集合,A是高一(1)班全體女同學(xué)組成的集合,求U-A及∁UA.
(3)在下列各圖中,用陰影表示集合A-B.

(4)如果A-B=∅,那么A與B之間具有怎樣的關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,且過點(-2,3).
(1)求橢圓C的方程;
(2)過橢圓C的右焦點作兩條相互垂直的直線l,m,且直線l交橢圓C于M、N兩點,直線m交橢圓C于P、Q兩點,求|MN|+|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知拋物線C:y2=4x的焦點為F、O為坐標(biāo)原點,點P在拋物線C上,且PF⊥OF,則|$\overrightarrow{OF}$-$\overrightarrow{PF}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.sin45°sin75°+sin45°sin15°=( 。
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.命題p:若$\overrightarrow{a}$•$\overrightarrow$>0,則$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角;
命題q:若函數(shù)f(x)在(-∞,0]及(0,+∞)上都是減函數(shù),則f(x)在(-∞,+∞)上是減函數(shù).下列說法:①“p∨q”是真命題;②“p∨q”是假命題;③非p為假命題;④非q為假命題.
其中正確的是②(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=Asin(ωx+φ)+1(A>0,ω>0,|φ|<$\frac{π}{2}$),圖象上有一個最低點是P(-$\frac{π}{6}$,-1),對于f(x1)=1,f(x2)=3,|x1-x2|的最小值為$\frac{π}{4}$.
(Ⅰ)若f(α+$\frac{π}{12}$)=$\frac{11}{8}$,且α為第三象限的角,求sinα+cosα的值;
(Ⅱ)討論y=f(x)+m在區(qū)間[0,$\frac{π}{2}$]上零點的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若定義在區(qū)間D上的函數(shù)y=f(x)滿足:對?x∈D,?M∈R,使得|f(x)|≤M恒成立,則稱函數(shù)y=f(x)在區(qū)間D上有界.則下列函數(shù)中有界的是:①④⑤.
①y=sinx;②$y=x+\frac{1}{x}$;③y=tanx;④$y=\frac{{{e^x}-{e^{-x}}}}{{{e^x}+{e^{-x}}}}$;
⑤y=x3+ax2+bx+1(-4≤x≤4),其中a,b∈R.

查看答案和解析>>

同步練習(xí)冊答案