設f(x)=a(x-5)2+6ln x,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調區(qū)間與極值.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若是的極值點,求及在上的最大值;
(2)若函數(shù)是上的單調遞增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的導函數(shù).
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范圍;
(2)解關于x的方程f(x)=|f′(x)|; ?
(3)設函數(shù)g(x)=,求g(x)在x∈[2,4]時的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=x2+xsin x+cos x.
(1)若曲線y=f(x)在點(a,f(a))處與直線y=b相切,求a與b的值;
(2)若曲線y=f(x)與直線y=b有兩個不同交點,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),(為常數(shù)),直線與函數(shù)、的圖象都相切,且與函數(shù)圖象的切點的橫坐標為.
(1)求直線的方程及的值;
(2)若 [注:是的導函數(shù)],求函數(shù)的單調遞增區(qū)間;
(3)當時,試討論方程的解的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=xln x,g(x)=x3+ax2-x+2.
(1)求函數(shù)f(x)的單調區(qū)間;
(2)對一切x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
定義F(x,y)=(1+x)y,x,y∈(0,+∞).令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線C1,曲線C1與y軸交于點A(0,m),過坐標原點O向曲線C1作切線,切點為B(n,t)(n>0),設曲線C1在點A,B之間的曲線段與線段OA,OB所圍成圖形的面積為S,求S的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com