設(shè)函數(shù)f(x)=lnx,g(x)=ax+1,a∈R,記F(x)=f(x)-g(x).
(Ⅰ)求曲線y=f(x)在x=e處的切線方程;
(Ⅱ)求函數(shù)F(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)a>0時(shí),若函數(shù)F(x)沒有零點(diǎn),求a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義,即可求曲線y=f(x)在x=e處的切線方程;
(Ⅱ)求函數(shù)F(x)的導(dǎo)數(shù),利用函數(shù)導(dǎo)數(shù)和單調(diào)性之間的關(guān)系即可求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)根據(jù)函數(shù)F(x)沒有零點(diǎn),轉(zhuǎn)化為對應(yīng)方程無解,即可得到結(jié)論.
解答: 解:( I)f′(x)=
1
x
,則函數(shù)f(x)在x=e處的切線的斜率為k=
1
e

又f(e)=1,
所以函數(shù)f(x)在x=e處的切線方程為y-1=
1
e
(x-e)
,即y=
1
e
x.

(Ⅱ)F(x)=f(x)-g(x)=lnx-ax-1,F(xiàn)′(x)=
1
x
-a=
1-ax
x
,(x>0).
①當(dāng)a≤0時(shí),F(xiàn)′(x)>0,F(xiàn)(x)在區(qū)間(0,+∞)上單調(diào)遞增;
②當(dāng)a>0時(shí),令F′(x)<0,解得x>
1
a
;
令F′(x)>0,解得0<x<
1
a

綜上所述,當(dāng)a≤0時(shí),函數(shù)F(x)的增區(qū)間是(0,+∞);
當(dāng)a>0時(shí),函數(shù)F(x)的增區(qū)間是(0,
1
a
)
,減區(qū)間是(
1
a
,+∞)


(Ⅲ)依題意,函數(shù)F(x)沒有零點(diǎn),
即F(x)=f(x)-g(x)=lnx-ax-1=0無解.
由(Ⅱ)知,當(dāng)a>0時(shí),函數(shù)F(x)在區(qū)間(0,
1
a
)
上為增函數(shù),區(qū)間(
1
a
,+∞)
上為減函數(shù),
由于F(1)=-a-1<0,只需F(
1
a
)=ln
1
a
-a
1
a
-1
=-lna-2<0,
解得a>e-2
所以實(shí)數(shù)a的取值范圍為(
1
e2
,+∞
).
點(diǎn)評:本題主要考查導(dǎo)數(shù)的幾何意義,以及函數(shù)的單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,考查學(xué)生的運(yùn)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

五名男生與兩名女生排成一排照相,如果男生甲必須站在正中間,兩名女生必須相鄰,符合條件的排法共有( 。
A、48種B、192種
C、240種D、288種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+a|x-1|+1,若f(x)≥0恒成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α、β∈(0,
π
2
),sinα-sinβ=-
1
2
  , cosα-cosβ=
1
2
,求sin(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=asin(ωx+θ)-b的部分圖象如圖,其中ω>0,|θ|<
π
2
,a,b分別是△ABC的角A,B所對的邊.
(1)求f(x)的解析式;
(2)若cosC=f(
C
2
)+1,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)用《幾何畫板》研究拋物線的性質(zhì):打開《幾何畫板》軟件,繪制某拋物線E:y2=2px,在拋物線上任意畫一個點(diǎn)S,度量點(diǎn)S的坐標(biāo)(xS,yS),如圖.
(Ⅰ)拖動點(diǎn)S,發(fā)現(xiàn)當(dāng)xS=4時(shí),yS=4,試求拋物線E的方程;
(Ⅱ)設(shè)拋物線E的頂點(diǎn)為A,焦點(diǎn)為F,構(gòu)造直線SF交拋物線E于不同兩點(diǎn)S、T,構(gòu)造直線AS、AT分別交準(zhǔn)線于M、N兩點(diǎn),構(gòu)造直線MT、NS.經(jīng)觀察得:沿著拋物線E,無論怎樣拖動點(diǎn)S,恒有MT∥NS.請你證明這一結(jié)論.
(Ⅲ)為進(jìn)一步研究該拋物線E的性質(zhì),某同學(xué)進(jìn)行了下面的嘗試:在(Ⅱ)中,把“焦點(diǎn)F”改變?yōu)槠渌岸c(diǎn)G(g,0)(g≠0)”,其余條件不變,發(fā)現(xiàn)“MT與NS不再平行”.是否可以適當(dāng)更改(Ⅱ)中的其它條件,使得仍有“MT∥NS”成立?如果可以,請寫出相應(yīng)的正確命題;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
a
x
,g(x)=ex(ax+1),其中a為常數(shù).
(Ⅰ)若y=f(x)在區(qū)間(1,+∞)上是單調(diào)增函數(shù),求a的取值范圍;
(Ⅱ)當(dāng)g(x)在區(qū)間(1,2)上不是單調(diào)函數(shù)時(shí),試求函數(shù)y=f(x)的零點(diǎn)個數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),過點(diǎn)A(-a,0),B(0,b)的直線的傾斜角為
π
6
,原點(diǎn)到該直線的距離為
2
2
,
(1)求橢圓的方程;
(2)直線y=kx+2與橢圓交于P,Q兩點(diǎn),點(diǎn)S是P,Q兩點(diǎn)的中點(diǎn),問是否存在實(shí)數(shù)k,使得kSO•kPQ為一個定值,若存在,請證明,若不存,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=3,(an+1-2)(an-2)=2(n∈N*),則a2014的值是
 

查看答案和解析>>

同步練習(xí)冊答案