16.設(shè)全集是實數(shù)集R,A={x|$\frac{1}{2}$≤x≤3},B={x||x|+a<0}.
(1)當(dāng)a=-4時,求A∩B和A∪B;
(2)若(∁RA)∩B=B,求實數(shù)a的取值范圍.

分析 (1)化簡a=-4時集合B,再寫出A∩B與A∪B;
(2)求出A的補集∁RA,再根據(jù)(∁R A)∩B=B得出B⊆∁RA;討論B=∅和B≠∅時,求出a的取值范圍.

解答 解:(1)全集是實數(shù)集R,集合A={x|$\frac{1}{2}$≤x≤3},
當(dāng)a=-4時,B={x||x|<4}={x|-4<x<4},
A∩B={x|$\frac{1}{2}$≤x≤3},
A∪B={x|-4<x<4};
(2)∁RA={x|x<$\frac{1}{2}$或x>3},
且(∁R A)∩B=B,
∴B⊆∁RA;
當(dāng)B=∅時,即a≥0,滿足B⊆∁R
當(dāng)B≠∅,即a<0,B={x|a<x<-a};
要使B⊆∁RA,只需-a≤$\frac{1}{2}$,
解得-$\frac{1}{2}$≤a<0;
綜上,實數(shù)a的取值范圍是{a|a≥-$\frac{1}{2}$}.

點評 本題考查了集合的化簡與運算問題,也考查了分類討論思想的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知向量$\overrightarrow{a}$=(1,t),$\overrightarrow$=(-2,1),若$\overrightarrow{a}$∥$\overrightarrow$,則t=( 。
A.-2B.$-\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.同時擲兩顆骰子,計算向上的點數(shù)和為5的概率為( 。
A.$\frac{1}{36}$B.$\frac{1}{9}$C.$\frac{1}{18}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={0,2,4,6,8},B={x|0<x≤7},則A∩B=( 。
A.{0,2,4}B.{2,4,6}C.{0,8}D.{2,4,6,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如果一個數(shù)列的前5項分別是1,2,3,4,5,則下列說法正確的是( 。
A.該數(shù)列一定是等差數(shù)列B.該數(shù)列一定不是等差數(shù)列
C.該數(shù)列不一定是等差數(shù)列D.以上結(jié)論都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.a(chǎn)=∫${\;}_{0}^{2}$xdx,分別以3a,2a,a,為長,寬,高的長方體表面積是88.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.等差數(shù)列{an}中,a3=4,前11項和S11=110,則a9=( 。
A.10B.12C.14D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知命題p:函數(shù)f(x)=$\frac{1}{3}$x3-x2+(5-a2)x+a在R上的增函數(shù);命題q:函數(shù)g(x)=$\frac{e^x}{x}$在[a,+∞)上單調(diào)遞增,若“p∨(¬q)”為真命題,“(¬p)∨q”也為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.命題“若a2+b2=0,則a=0或b=0”的否命題是( 。
A.若a≠0或b≠0,則a2+b2≠0B.若a2+b2≠0,則a≠0且b≠0
C.若a=0且b=0,則 a2+b2≠0D.若a2+b2≠0,則a≠0或b≠0

查看答案和解析>>

同步練習(xí)冊答案