12.已知實數(shù)a,b,c滿足a+b+c=0,a2+b2+c2=1,則a的最大值為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{2}{3}$D.$\frac{2\sqrt{2}}{3}$

分析 由已知條件a+b+c=0,a2+b2+c2=1,變形后,得到bc與b+c的值,利用完全平方式將變形后的式子代入推出b、c是二次方程的兩個實數(shù)根,利用根的判別式得到有關(guān)a的不等式后確定a的取值范圍.

解答 解:∵a+b+c=0,a2+b2+c2=1,
∴b+c=-a,b2+c2=1-a2,
∴bc=$\frac{1}{2}$•(2bc)
=$\frac{1}{2}$[(b+c)2-(b2+c2)]
=a2-$\frac{1}{2}$
∴b、c是方程:x2+ax+a2-$\frac{1}{2}$=0的兩個實數(shù)根,
∴△≥0
∴a2-4(a2-$\frac{1}{2}$)≥0
即a2≤$\frac{2}{3}$
∴-$\frac{\sqrt{6}}{3}$≤a≤$\frac{\sqrt{6}}{3}$
即a的最大值為$\frac{\sqrt{6}}{3}$
故選:B.

點評 本題考查了函數(shù)最值問題,函數(shù)與方程的綜合應用,解決本題的關(guān)鍵是利用根的判別式得到有關(guān)未知數(shù)的不等式,進而求得a的取值范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

2.極坐標系與直角坐標系xOy有相同的長度單位,以原點O為極點,以x軸正半軸為極軸.已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=2+t}\\{y=\sqrt{3}t}\end{array}}\right.$(t為參數(shù)),曲線C的極坐標方程為ρsin2θ=8cosθ.設(shè)直線l與曲線C交于A,B兩點,弦長|AB|=$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.我國人口老齡化問題已經(jīng)開始凸顯,只有逐步調(diào)整完善生育政策,才能促進人口長期均衡發(fā)展,十八屆五中全會提出“二胎全面放開”政策.為了解適齡公務(wù)員對放開生育二胎政策的態(tài)度,某部門隨機調(diào)查了100位30到40歲的公務(wù)員,其中男女比例為3:2,被調(diào)查的男性公務(wù)員中,表示有意愿生二胎的占$\frac{5}{6}$;被調(diào)查的女性公務(wù)員中表示有意愿要二胎的占$\frac{3}{8}$.
(1)根據(jù)調(diào)查情況完成下面2×2列聯(lián)表
 男性公務(wù)員女性公務(wù)員 總計 
 生二胎   
 不生二胎   
 總計  
(2)是否有99%以上的把握認為“生二胎與性別有關(guān)”,并說明理由:
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(d+b)}$.其中n=a+b+c+d.
臨界值表
P(K2≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.曲線f(x)=axn(a,n∈R)在點(1,2)處的切線方程是y=4x-2,則下列說法正確的是(  )
A.函數(shù)f(x)是偶函數(shù)且有最大值B.函數(shù)f(x)是偶函數(shù)且有最小值
C.函數(shù)f(x)是奇函數(shù)且有最大值D.函數(shù)f(x)是奇函數(shù)且有最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足:f(x)+g(x)=ex,則$\frac{{2}^{n}g(1)g(2)g({2}^{2})…g({2}^{n-1})}{f({2}^{n})}$=$\frac{2e}{{e}^{2}+1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若對任意m∈(-2,-1),f(x)=mx2-(5m+n)x+n在x∈(3,5)上存在零點,則實數(shù)n的取值范圍是0<n≤3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.給出下列結(jié)論:
①2ab是a2+b2的最小值;
②設(shè)a>0,b>0,2$\sqrt{ab}$的最大值是a+b;
③$\sqrt{{x}^{2}+4}$+$\frac{1}{\sqrt{{x}^{2}+4}}$的最小值是2;
④若x>0,則cosx+$\frac{1}{cosx}$≥2$\sqrt{cosx•\frac{1}{cosx}}$=2;
⑤若a>b>0,$\frac{a+b}{2}$>$\sqrt{ab}$>$\frac{2ab}{a+b}$.
其中正確結(jié)論的編號是⑤.(寫出所有正確的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知直線l:x+y+2=0與圓C:(x-1)2+(y+1)2=2,則圓心C到直線l的距離(  )
A.$2\sqrt{2}$B.2C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,A、B、C、D、E在圓周上,且 A B∥C E,A E∥BD,BD交C E于點F,過 A點的圓的切線交C E的延長線于 P,若 PE=CF=1,P A=2.
(1)求 A E的長;
(2)求證:點F是 BD的中點.

查看答案和解析>>

同步練習冊答案