已知函數(shù)f(x)=m2(lnx)2+(-3m+1)lnx在區(qū)間(e,e2)上是單調(diào)增函數(shù),則m的取值范圍是
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:分類(lèi)討論,當(dāng)m=0時(shí)符合要求,當(dāng)m≠0時(shí),利用導(dǎo)數(shù)求出極值點(diǎn),得到極值點(diǎn)和e的關(guān)系,繼而得到關(guān)于m的一元二次不等式,解得即可.
解答: 解:當(dāng)m=0時(shí),f(x)=lnx為單調(diào)增函數(shù),符合要求
當(dāng)m≠0時(shí),
f′(x)=2m2lnx•
1
x
+
-3m+1
x
=
1
x
[2m2lnx-3m+1],
令f′(x)=0,解得x0=e
3m-1
2m2

當(dāng)f′(x)>0時(shí),即x>x0,單調(diào)遞增,
當(dāng)f′(x)<0時(shí),即x<x0,單調(diào)遞減,
∴x0≤e
即:
3m-1
2m2
≤1,
即2m2-3m+1≥0,
∴(2m-1)(m-1)≥0,
解得m≥1,或m≤
1
2

綜上所述,m的取值范圍是(-∞,
1
2
]∪{0}∪[1,+∞)
故答案為(-∞,
1
2
]∪{0}∪[1,+∞)
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,以及一元二次不等式的解法,培養(yǎng)了學(xué)生分類(lèi)討論和轉(zhuǎn)化的能力,屬于中檔題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩直線(xiàn)3x+4y-8=0,6x+8y+11=0間的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若雙曲線(xiàn)
x2
8
-
y2
m
=1的漸近線(xiàn)方程為y=±2x,則實(shí)數(shù)m等于( 。
A、4B、8C、16D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓上不相同九點(diǎn),兩點(diǎn)連成線(xiàn)段,線(xiàn)段在圓內(nèi)交點(diǎn)的最多個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定點(diǎn)F1(-1,0),F(xiàn)2(1,0),曲線(xiàn)E是以原點(diǎn)為頂點(diǎn)、F2為焦點(diǎn)且離心率為1的圓錐曲線(xiàn),橢圓C與曲線(xiàn)E的交點(diǎn)為A,B,且點(diǎn)A到點(diǎn)F1,F(xiàn)2的距離之和為4.
(1)求橢圓C和曲線(xiàn)E的方程;
(2)在橢圓C和曲線(xiàn)E上是否存在這樣的點(diǎn)P,使得△PAB的面積為
8
6
9
?若存在,求出所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)若平行于x軸的直線(xiàn)分別與橢圓C和曲線(xiàn)E交于M(x1,y1),N(x2,y2)兩點(diǎn),且x1>x2,求△MNF2的周長(zhǎng)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程x2+mx+m+n=0的兩根分別為橢圓和雙曲線(xiàn)的離心率.記分別以m,n為橫、縱坐標(biāo)的點(diǎn)A(m,n)表示的平面區(qū)域D.若函數(shù)y=loga(x+4)(a>1)的圖象上存在區(qū)域D內(nèi)的點(diǎn),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記等差數(shù)列{an}得前n項(xiàng)和為Sn,利用倒序相加法的求和辦法,可將Sn表示成首項(xiàng)a1,末項(xiàng)an與項(xiàng)數(shù)的一個(gè)關(guān)系式,即Sn=
(a1+an)n
2
;類(lèi)似地,記等比數(shù)列{bn}的前n項(xiàng)積為T(mén)n,bn>0(n∈N*),類(lèi)比等差數(shù)列的求和方法,可將Tn表示為首項(xiàng)b1,末項(xiàng)bn與項(xiàng)數(shù)的一個(gè)關(guān)系式,即公式Tn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)正方體的平面展開(kāi)圖,則在正方體中,①CN與BE是異面直線(xiàn);②平面DEM∥平面ACF;③DE⊥BM; ④AF與BM所成角為60°;⑤BN⊥平面AFC,在以上的五個(gè)結(jié)論中,正確的是
 
(寫(xiě)出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x-1|-|2x+3|,則滿(mǎn)足f(x)≤1的x的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案