已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0)的對稱中心為M(x0,y0),記函數(shù)f(x)的導函數(shù)為f′(x),f′(x)的導函數(shù)為f″(x),則有f″(x0)=0.若函數(shù)f(x)=x3-3x2,則可求出f(
1
2015
)+f(
2
2015
)+f(
3
2015
)+…+f(
4028
2015
)+f(
4029
2015
)的值為( 。
A、4029B、-4029
C、8058D、-8058
考點:導數(shù)的運算,函數(shù)恒成立問題
專題:導數(shù)的概念及應用
分析:由題意對已知函數(shù)求兩次導數(shù)可得圖象關于點(1,-2)對稱,即f(x)+f(2-x)=-4,而要求的式子可用倒序相加法求解,共有2014對-4和一個f(1)=-2,可得答案.
解答: 解:①由題意f(x)=x3-3x2
則f′(x)=3x2-6x,
f″(x)=6x-6,
由f″(x0)=0得6x0-6=1
解得x0=1,而f(1)=-2,
故函數(shù)f(x)=x3-3x2關于點(1,-2)對稱,
∴f(x)+f(2-x)=-4,
∴f(
1
2015
)+f(
2
2015
)+f(
3
2015
)+…+f(
4028
2015
)+f(
4029
2015
)=-4×2014+(-2)=-8058.
故選:D.
點評:本題主要考查導數(shù)的基本運算,利用條件求出函數(shù)的對稱中心是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知sin(α+
2
)=
1
3
,則cos2α=( 。
A、-
7
9
B、
7
9
C、-
1
3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個圓錐體按如圖所示擺放,它的主視圖是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

先將下列代數(shù)式化簡,再求值:(a+b)(a-b)+b(b-2),其中a=
2
,b=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y=x2-(2a-1)x+a2-1與x軸的交點在y軸同一側的一個充分非必要條件為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:x≥1,命題q:x2≥x,則p是q的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1
2
sin2x+cos2x的最小正周期為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,已知a1=3,an+1=an+4n-2(n∈N*),則數(shù)列{an}的通項為an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=lgx,若f(mn)=2628,(m>0,n>0),則f(
m
)+f(
n
)=
 

查看答案和解析>>

同步練習冊答案